Renal dopamine receptor function in hypertension. 1998

T Hussain, and M F Lokhandwala
Institute for Cardiovascular Studies, College of Pharmacy, University of Houston, Texas 77204-5511, USA.

Dopamine plays an important role in the regulation of renal sodium excretion. The synthesis of dopamine and the presence of dopamine receptor subtypes (D1A, D1B, as D1-like and D2, and D3 as D2-like) have been shown within the kidney. The activation of D1-like receptors located on the proximal tubules causes inhibition of tubular sodium reabsorption by inhibiting Na,H-exchanger and Na,K-ATPase activity. The D1-like receptors are linked to the multiple cellular signaling systems (namely, adenylyl cyclase, phospholipase C, and phospholipase A2) in the different regions of the nephron. Defective renal dopamine production and/or dopamine receptor function have been reported in human primary hypertension as well as in genetic models of animal hypertension. There may be a primary defect in D1-like receptors and an altered signaling system in the proximal tubules that lead to reduced dopamine-mediated effects on renal sodium excretion in hypertension. Recently, it has been shown in animal models that the disruption of either D1A or D3 receptors at the gene level causes hypertension in mice. Dopamine and dopamine receptor agonists also provide therapeutic potential in treatment of various cardiovascular pathological conditions, including hypertension. However, because of the poor bioavailability of the currently available compounds, the use of D1-like agonists is limited to the management of patients with severe hypertension when a rapid reduction of blood pressure is clinically indicated and in acute management of patients with heart failure. In conclusion, there is convincing evidence that dopamine and dopamine receptors play an important role in regulation of renal function, suggesting that a defective dopamine receptor/signaling system may contribute to the development and maintenance of hypertension. Further studies need to be directed toward establishing a direct correlation between defective dopamine receptor gene in the kidney and development of hypertension. Subsequently, it may be possible to use a therapeutic approach to correct the defect in dopamine receptor gene causing the hypertension.

UI MeSH Term Description Entries
D006973 Hypertension Persistently high systemic arterial BLOOD PRESSURE. Based on multiple readings (BLOOD PRESSURE DETERMINATION), hypertension is currently defined as when SYSTOLIC PRESSURE is consistently greater than 140 mm Hg or when DIASTOLIC PRESSURE is consistently 90 mm Hg or more. Blood Pressure, High,Blood Pressures, High,High Blood Pressure,High Blood Pressures
D007668 Kidney Body organ that filters blood for the secretion of URINE and that regulates ion concentrations. Kidneys
D011918 Rats, Inbred SHR A strain of Rattus norvegicus with elevated blood pressure used as a model for studying hypertension and stroke. Rats, Spontaneously Hypertensive,Rats, SHR,Inbred SHR Rat,Inbred SHR Rats,Rat, Inbred SHR,Rat, SHR,Rat, Spontaneously Hypertensive,SHR Rat,SHR Rat, Inbred,SHR Rats,SHR Rats, Inbred,Spontaneously Hypertensive Rat,Spontaneously Hypertensive Rats
D011954 Receptors, Dopamine Cell-surface proteins that bind dopamine with high affinity and trigger intracellular changes influencing the behavior of cells. Dopamine Receptors,Dopamine Receptor,Receptor, Dopamine
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D015398 Signal Transduction The intracellular transfer of information (biological activation/inhibition) through a signal pathway. In each signal transduction system, an activation/inhibition signal from a biologically active molecule (hormone, neurotransmitter) is mediated via the coupling of a receptor/enzyme to a second messenger system or to an ion channel. Signal transduction plays an important role in activating cellular functions, cell differentiation, and cell proliferation. Examples of signal transduction systems are the GAMMA-AMINOBUTYRIC ACID-postsynaptic receptor-calcium ion channel system, the receptor-mediated T-cell activation pathway, and the receptor-mediated activation of phospholipases. Those coupled to membrane depolarization or intracellular release of calcium include the receptor-mediated activation of cytotoxic functions in granulocytes and the synaptic potentiation of protein kinase activation. Some signal transduction pathways may be part of larger signal transduction pathways; for example, protein kinase activation is part of the platelet activation signal pathway. Cell Signaling,Receptor-Mediated Signal Transduction,Signal Pathways,Receptor Mediated Signal Transduction,Signal Transduction Pathways,Signal Transduction Systems,Pathway, Signal,Pathway, Signal Transduction,Pathways, Signal,Pathways, Signal Transduction,Receptor-Mediated Signal Transductions,Signal Pathway,Signal Transduction Pathway,Signal Transduction System,Signal Transduction, Receptor-Mediated,Signal Transductions,Signal Transductions, Receptor-Mediated,System, Signal Transduction,Systems, Signal Transduction,Transduction, Signal,Transductions, Signal
D051379 Mice The common name for the genus Mus. Mice, House,Mus,Mus musculus,Mice, Laboratory,Mouse,Mouse, House,Mouse, Laboratory,Mouse, Swiss,Mus domesticus,Mus musculus domesticus,Swiss Mice,House Mice,House Mouse,Laboratory Mice,Laboratory Mouse,Mice, Swiss,Swiss Mouse,domesticus, Mus musculus
D051381 Rats The common name for the genus Rattus. Rattus,Rats, Laboratory,Rats, Norway,Rattus norvegicus,Laboratory Rat,Laboratory Rats,Norway Rat,Norway Rats,Rat,Rat, Laboratory,Rat, Norway,norvegicus, Rattus

Related Publications

T Hussain, and M F Lokhandwala
November 2006, Clinical and experimental hypertension (New York, N.Y. : 1993),
T Hussain, and M F Lokhandwala
August 2013, Hypertension (Dallas, Tex. : 1979),
T Hussain, and M F Lokhandwala
September 2006, Kidney international,
T Hussain, and M F Lokhandwala
December 2009, American journal of physiology. Renal physiology,
T Hussain, and M F Lokhandwala
January 2000, Nihon rinsho. Japanese journal of clinical medicine,
T Hussain, and M F Lokhandwala
April 2009, Clinical and experimental hypertension (New York, N.Y. : 1993),
T Hussain, and M F Lokhandwala
January 2013, American journal of physiology. Renal physiology,
T Hussain, and M F Lokhandwala
December 1988, Journal of hypertension. Supplement : official journal of the International Society of Hypertension,
T Hussain, and M F Lokhandwala
May 2015, Nature reviews. Nephrology,
T Hussain, and M F Lokhandwala
December 1998, Naunyn-Schmiedeberg's archives of pharmacology,
Copied contents to your clipboard!