Appropriate regulation of human renin gene expression and secretion in 45-kb human renin transgenic mice. 1998

Y Yan, and L Hu, and R Chen, and J E Sealey, and J H Laragh, and D F Catanzaro
Cardiovascular Center, Cornell University Medical College, New York, NY 10021, USA.

To create physiological models of the human renin-angiotensin system in transgenic animals, the component genes should be expressed in the correct tissues and cells and respond appropriately to physiological stimuli. We recently showed that mice carrying a 45-kb human renin genomic fragment, containing approximately 25 kb 5'-flanking DNA and 6 kb 3'-flanking DNA, express the transgene in a highly cell- and tissue-specific pattern. More importantly, in contrast to previous models, human renin in the circulating plasma of these mice is derived exclusively from the kidneys. In the present study, we tested the responses of both human and mouse renal renin expression and secretion of the 45-kb hREN transgenic mice to a variety of physiological and pharmacological stimuli. A sodium-deficient diet, angiotensin-converting enzyme inhibition, and beta1-adrenergic stimulation each increased both human and mouse plasma renin concentration significantly, whereas elevated blood pressure and/or increased plasma angiotensin II levels suppressed them. Human and mouse renal renin mRNA levels changed similarly but to a lesser degree. These studies demonstrate that human renin synthesis and secretion respond appropriately in 45-kb hREN mice to physiological stimuli. This most likely results from appropriate cell-specific expression of the transgene conferred by the extended transgene flanking sequences.

UI MeSH Term Description Entries
D007150 Immunohistochemistry Histochemical localization of immunoreactive substances using labeled antibodies as reagents. Immunocytochemistry,Immunogold Techniques,Immunogold-Silver Techniques,Immunohistocytochemistry,Immunolabeling Techniques,Immunogold Technics,Immunogold-Silver Technics,Immunolabeling Technics,Immunogold Silver Technics,Immunogold Silver Techniques,Immunogold Technic,Immunogold Technique,Immunogold-Silver Technic,Immunogold-Silver Technique,Immunolabeling Technic,Immunolabeling Technique,Technic, Immunogold,Technic, Immunogold-Silver,Technic, Immunolabeling,Technics, Immunogold,Technics, Immunogold-Silver,Technics, Immunolabeling,Technique, Immunogold,Technique, Immunogold-Silver,Technique, Immunolabeling,Techniques, Immunogold,Techniques, Immunogold-Silver,Techniques, Immunolabeling
D007668 Kidney Body organ that filters blood for the secretion of URINE and that regulates ion concentrations. Kidneys
D008822 Mice, Transgenic Laboratory mice that have been produced from a genetically manipulated EGG or EMBRYO, MAMMALIAN. Transgenic Mice,Founder Mice, Transgenic,Mouse, Founder, Transgenic,Mouse, Transgenic,Mice, Transgenic Founder,Transgenic Founder Mice,Transgenic Mouse
D012083 Renin A highly specific (Leu-Leu) endopeptidase that generates ANGIOTENSIN I from its precursor ANGIOTENSINOGEN, leading to a cascade of reactions which elevate BLOOD PRESSURE and increase sodium retention by the kidney in the RENIN-ANGIOTENSIN SYSTEM. The enzyme was formerly listed as EC 3.4.99.19. Angiotensin-Forming Enzyme,Angiotensinogenase,Big Renin,Cryorenin,Inactive Renin,Pre-Prorenin,Preprorenin,Prorenin,Angiotensin Forming Enzyme,Pre Prorenin,Renin, Big,Renin, Inactive
D012084 Renin-Angiotensin System A BLOOD PRESSURE regulating system of interacting components that include RENIN; ANGIOTENSINOGEN; ANGIOTENSIN CONVERTING ENZYME; ANGIOTENSIN I; ANGIOTENSIN II; and angiotensinase. Renin, an enzyme produced in the kidney, acts on angiotensinogen, an alpha-2 globulin produced by the liver, forming ANGIOTENSIN I. Angiotensin-converting enzyme, contained in the lung, acts on angiotensin I in the plasma converting it to ANGIOTENSIN II, an extremely powerful vasoconstrictor. Angiotensin II causes contraction of the arteriolar and renal VASCULAR SMOOTH MUSCLE, leading to retention of salt and water in the KIDNEY and increased arterial blood pressure. In addition, angiotensin II stimulates the release of ALDOSTERONE from the ADRENAL CORTEX, which in turn also increases salt and water retention in the kidney. Angiotensin-converting enzyme also breaks down BRADYKININ, a powerful vasodilator and component of the KALLIKREIN-KININ SYSTEM. Renin-Angiotensin-Aldosterone System,Renin Angiotensin Aldosterone System,Renin Angiotensin System,System, Renin-Angiotensin,System, Renin-Angiotensin-Aldosterone
D005786 Gene Expression Regulation Any of the processes by which nuclear, cytoplasmic, or intercellular factors influence the differential control (induction or repression) of gene action at the level of transcription or translation. Gene Action Regulation,Regulation of Gene Expression,Expression Regulation, Gene,Regulation, Gene Action,Regulation, Gene Expression
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D051379 Mice The common name for the genus Mus. Mice, House,Mus,Mus musculus,Mice, Laboratory,Mouse,Mouse, House,Mouse, Laboratory,Mouse, Swiss,Mus domesticus,Mus musculus domesticus,Swiss Mice,House Mice,House Mouse,Laboratory Mice,Laboratory Mouse,Mice, Swiss,Swiss Mouse,domesticus, Mus musculus
D018014 Gene Transfer Techniques The introduction of functional (usually cloned) GENES into cells. A variety of techniques and naturally occurring processes are used for the gene transfer such as cell hybridization, LIPOSOMES or microcell-mediated gene transfer, ELECTROPORATION, chromosome-mediated gene transfer, TRANSFECTION, and GENETIC TRANSDUCTION. Gene transfer may result in genetically transformed cells and individual organisms. Gene Delivery Systems,Gene Transfer Technique,Transgenesis,Delivery System, Gene,Delivery Systems, Gene,Gene Delivery System,Technique, Gene Transfer,Techniques, Gene Transfer,Transfer Technique, Gene,Transfer Techniques, Gene

Related Publications

Y Yan, and L Hu, and R Chen, and J E Sealey, and J H Laragh, and D F Catanzaro
January 1998, Circulation research,
Y Yan, and L Hu, and R Chen, and J E Sealey, and J H Laragh, and D F Catanzaro
August 1996, Hypertension (Dallas, Tex. : 1979),
Y Yan, and L Hu, and R Chen, and J E Sealey, and J H Laragh, and D F Catanzaro
December 1989, Biochemical and biophysical research communications,
Y Yan, and L Hu, and R Chen, and J E Sealey, and J H Laragh, and D F Catanzaro
October 1993, Pediatric nephrology (Berlin, Germany),
Y Yan, and L Hu, and R Chen, and J E Sealey, and J H Laragh, and D F Catanzaro
July 2000, Hypertension research : official journal of the Japanese Society of Hypertension,
Y Yan, and L Hu, and R Chen, and J E Sealey, and J H Laragh, and D F Catanzaro
January 1990, Journal of cardiovascular pharmacology,
Y Yan, and L Hu, and R Chen, and J E Sealey, and J H Laragh, and D F Catanzaro
January 1986, Nature,
Y Yan, and L Hu, and R Chen, and J E Sealey, and J H Laragh, and D F Catanzaro
May 1992, Circulation research,
Y Yan, and L Hu, and R Chen, and J E Sealey, and J H Laragh, and D F Catanzaro
February 1999, FEBS letters,
Y Yan, and L Hu, and R Chen, and J E Sealey, and J H Laragh, and D F Catanzaro
November 1997, Journal of immunology (Baltimore, Md. : 1950),
Copied contents to your clipboard!