Arterial heparan sulfate proteoglycans inhibit vascular smooth muscle cell proliferation and phenotype change in vitro and neointimal formation in vivo. 1998

J A Bingley, and I P Hayward, and J H Campbell, and G R Campbell
Centre for Research in Vascular Biology and CRC for Cardiac Technology, Department of Anatomical Sciences, University of Queensland, Australia.

OBJECTIVE The aim of this study was to determine whether heparan sulfate proteoglycans (HSPGs) from the normal arterial wall inhibit neointimal formation after injury in vivo and smooth muscle cell (SMC) phenotype change and proliferation in vitro. METHODS Arterial HSPGs were extracted from rabbit aortae and separated by anion-exchange chromatography. The effect of HSPGs, applied in a periadventitial gel, on neointimal formation was assessed 14 days after balloon catheter injury of rabbit carotid arteries. Their effect on SMC phenotype and proliferation was measured by point-counting morphometry of the cytoplasmic volume fraction of myofilaments (Vvmyo) and 3H-thymidine incorporation in SMCs in culture. RESULTS Arterial HSPGs (680 microg) reduced neointimal formation by 35% at 14 days after injury (P=.029), whereas 2000 microg of the low-molecular-weight heparin Enoxaparin was ineffective. HSPGs at 34 microg/mL maintained subconfluent primary cultured SMCs with the same high Vvmyo (52.1%+/-13.8%) after 5 days in culture as did cells freshly isolated from the arterial wall (52.1%+/-15.1%). In contrast, 100 microg/mL Enoxaparin was ineffective in preventing phenotypic change over this time period (Vvmyo 38.9%+/-14.6%, controls 35.9%+/-12.8%). HSPGs also inhibited 3H-thymidine incorporation into primary cultured SMCs with an ID50 value of 0.4 microg/mL compared with a value of 14 microg/mL for Enoxaparin (P< .01). CONCLUSIONS When used periadventitially in the rabbit arterial injury model, natural arterial HSPGs are effective inhibitors of neointimal formation. In vitro, the HSPGs maintain SMCs in a quiescent state by inhibiting phenotypic change and DNA synthesis. This study suggests that HSPGs may be a natural agent for the treatment of clinical restenosis.

UI MeSH Term Description Entries
D009131 Muscle, Smooth, Vascular The nonstriated involuntary muscle tissue of blood vessels. Vascular Smooth Muscle,Muscle, Vascular Smooth,Muscles, Vascular Smooth,Smooth Muscle, Vascular,Smooth Muscles, Vascular,Vascular Smooth Muscles
D010641 Phenotype The outward appearance of the individual. It is the product of interactions between genes, and between the GENOTYPE and the environment. Phenotypes
D011817 Rabbits A burrowing plant-eating mammal with hind limbs that are longer than its fore limbs. It belongs to the family Leporidae of the order Lagomorpha, and in contrast to hares, possesses 22 instead of 24 pairs of chromosomes. Belgian Hare,New Zealand Rabbit,New Zealand Rabbits,New Zealand White Rabbit,Rabbit,Rabbit, Domestic,Chinchilla Rabbits,NZW Rabbits,New Zealand White Rabbits,Oryctolagus cuniculus,Chinchilla Rabbit,Domestic Rabbit,Domestic Rabbits,Hare, Belgian,NZW Rabbit,Rabbit, Chinchilla,Rabbit, NZW,Rabbit, New Zealand,Rabbits, Chinchilla,Rabbits, Domestic,Rabbits, NZW,Rabbits, New Zealand,Zealand Rabbit, New,Zealand Rabbits, New,cuniculus, Oryctolagus
D002339 Carotid Arteries Either of the two principal arteries on both sides of the neck that supply blood to the head and neck; each divides into two branches, the internal carotid artery and the external carotid artery. Arteries, Carotid,Artery, Carotid,Carotid Artery
D002404 Catheterization Use or insertion of a tubular device into a duct, blood vessel, hollow organ, or body cavity for injecting or withdrawing fluids for diagnostic or therapeutic purposes. It differs from INTUBATION in that the tube here is used to restore or maintain patency in obstructions. Cannulation,Cannulations,Catheterizations
D002455 Cell Division The fission of a CELL. It includes CYTOKINESIS, when the CYTOPLASM of a cell is divided, and CELL NUCLEUS DIVISION. M Phase,Cell Division Phase,Cell Divisions,Division Phase, Cell,Division, Cell,Divisions, Cell,M Phases,Phase, Cell Division,Phase, M,Phases, M
D004261 DNA Replication The process by which a DNA molecule is duplicated. Autonomous Replication,Replication, Autonomous,Autonomous Replications,DNA Replications,Replication, DNA,Replications, Autonomous,Replications, DNA
D005352 Fibromuscular Dysplasia An idiopathic, segmental, nonatheromatous disease of the musculature of arterial walls, leading to STENOSIS of small and medium-sized arteries. There is true proliferation of SMOOTH MUSCLE CELLS and fibrous tissue. Fibromuscular dysplasia lesions are smooth stenosis and occur most often in the renal and carotid arteries. They may also occur in other peripheral arteries of the extremity. Fibromuscular Dysplasia of Arteries,Arteries Fibromuscular Dysplasia,Arteries Fibromuscular Dysplasias,Dysplasia, Fibromuscular,Fibromuscular Dysplasias
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D016893 Carotid Stenosis Narrowing or stricture of any part of the CAROTID ARTERIES, most often due to atherosclerotic plaque formation. Ulcerations may form in atherosclerotic plaques and induce THROMBUS formation. Platelet or cholesterol emboli may arise from stenotic carotid lesions and induce a TRANSIENT ISCHEMIC ATTACK; CEREBROVASCULAR ACCIDENT; or temporary blindness (AMAUROSIS FUGAX). (From Adams et al., Principles of Neurology, 6th ed, pp 822-3) Carotid Artery Narrowing,Carotid Ulcer,Carotid Artery Plaque,Carotid Artery Stenosis,Carotid Artery Ulcerating Plaque,Common Carotid Artery Stenosis,External Carotid Artery Stenosis,Internal Carotid Artery Stenosis,Plaque, Ulcerating, Carotid Artery,Stenosis, Common Carotid Artery,Stenosis, External Carotid Artery,Ulcerating Plaque, Carotid Artery,Artery Narrowing, Carotid,Artery Narrowings, Carotid,Artery Plaque, Carotid,Artery Plaques, Carotid,Artery Stenoses, Carotid,Artery Stenosis, Carotid,Carotid Artery Narrowings,Carotid Artery Plaques,Carotid Artery Stenoses,Carotid Stenoses,Carotid Ulcers,Narrowing, Carotid Artery,Narrowings, Carotid Artery,Plaque, Carotid Artery,Plaques, Carotid Artery,Stenoses, Carotid,Stenoses, Carotid Artery,Stenosis, Carotid,Stenosis, Carotid Artery,Ulcer, Carotid,Ulcers, Carotid

Related Publications

J A Bingley, and I P Hayward, and J H Campbell, and G R Campbell
December 2002, Gene therapy,
J A Bingley, and I P Hayward, and J H Campbell, and G R Campbell
August 2005, The Journal of biological chemistry,
J A Bingley, and I P Hayward, and J H Campbell, and G R Campbell
September 1996, Arteriosclerosis, thrombosis, and vascular biology,
J A Bingley, and I P Hayward, and J H Campbell, and G R Campbell
December 2020, Atherosclerosis,
J A Bingley, and I P Hayward, and J H Campbell, and G R Campbell
September 2012, Cardiovascular research,
J A Bingley, and I P Hayward, and J H Campbell, and G R Campbell
August 2010, Journal of molecular and cellular cardiology,
J A Bingley, and I P Hayward, and J H Campbell, and G R Campbell
November 2004, Arteriosclerosis, thrombosis, and vascular biology,
J A Bingley, and I P Hayward, and J H Campbell, and G R Campbell
September 1998, Biochemistry,
J A Bingley, and I P Hayward, and J H Campbell, and G R Campbell
January 2014, PloS one,
Copied contents to your clipboard!