Mechanisms responsible for resistance of sublines derived from leukemia cell lines to an antitumor agent 9-beta-D-arabinofuranosyl-2-fluoroadenine. 1998

L Bai, and M Yamaguchi, and M Tatsumi, and K Kon, and M Bräutigam
Research Department, Nihon Schering Co. Ltd., Osaka, Japan.

An agent 9-beta-D-arabinofuranosyl-2-fluoroadenine (2-F-Ara-A) is a main metabolite of fludarabine, a fluorinated purine analogue with antitumor activity in lymphoproliferative malignancies. In this study, the mechanism responsible for the resistance of cancer cells to fludarabine was examined using the 2-F-Ara-A-resistant sublines JOK-1/F-Ara-A and L1210/F-Ara-A from a human hairy leukemic cell line (JOK-1) and a mouse leukemic cell line (L1210) respectively, which were established by continuous treatment of the parental cell lines with 2-F-AraA. JOK-1/F-Ara-A and L1210/F-Ara-A cells were more than 55 and 29 times more resistant to 2-F-Ara-A than were their parent cell lines, and showed a high cross-resistance to 1-beta-D-arabinofuranosylcytosine but not to doxorubicin or vincristine. These resistant sublines intracellularly accumulated almost the same amount of 2-F-Ara-A as did their parent cell lines. However, the amount of 2-F-Ara-ATP, a cytotoxic metabolite of 2-F-Ara-A, decreased by 2.6% (JOK-1/F-Ara-A C3), 6% (L1210/F-Ara-A C1) and 3.7% (L1210/F-Ara-A C7) relative to the levels in the parent cell lines. Enzymatically, these resistant cells hardly activated deoxycytidine (dCyd) and 2-F-Ara-A. In addition, the abilities to phosphorylate deoxyadenosine and deoxyguanosine were also decreased in the resistant cells in comparison with the parent cells. These findings suggest that the deficiency in activity of dCyd kinase may contribute to the resistance of 2-F-Ara-A.

UI MeSH Term Description Entries
D007943 Leukemia, Hairy Cell A neoplastic disease of the lymphoreticular cells which is considered to be a rare type of chronic leukemia; it is characterized by an insidious onset, splenomegaly, anemia, granulocytopenia, thrombocytopenia, little or no lymphadenopathy, and the presence of "hairy" or "flagellated" cells in the blood and bone marrow. Hairy Cell Leukemia,Leukemic Reticuloendotheliosis,Reticuloendotheliosis, Leukemic,Hairy Cell Leukemias,Leukemias, Hairy Cell,Leukemic Reticuloendothelioses,Reticuloendothelioses, Leukemic
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D000970 Antineoplastic Agents Substances that inhibit or prevent the proliferation of NEOPLASMS. Anticancer Agent,Antineoplastic,Antineoplastic Agent,Antineoplastic Drug,Antitumor Agent,Antitumor Drug,Cancer Chemotherapy Agent,Cancer Chemotherapy Drug,Anticancer Agents,Antineoplastic Drugs,Antineoplastics,Antitumor Agents,Antitumor Drugs,Cancer Chemotherapy Agents,Cancer Chemotherapy Drugs,Chemotherapeutic Anticancer Agents,Chemotherapeutic Anticancer Drug,Agent, Anticancer,Agent, Antineoplastic,Agent, Antitumor,Agent, Cancer Chemotherapy,Agents, Anticancer,Agents, Antineoplastic,Agents, Antitumor,Agents, Cancer Chemotherapy,Agents, Chemotherapeutic Anticancer,Chemotherapy Agent, Cancer,Chemotherapy Agents, Cancer,Chemotherapy Drug, Cancer,Chemotherapy Drugs, Cancer,Drug, Antineoplastic,Drug, Antitumor,Drug, Cancer Chemotherapy,Drug, Chemotherapeutic Anticancer,Drugs, Antineoplastic,Drugs, Antitumor,Drugs, Cancer Chemotherapy
D014407 Tumor Cells, Cultured Cells grown in vitro from neoplastic tissue. If they can be established as a TUMOR CELL LINE, they can be propagated in cell culture indefinitely. Cultured Tumor Cells,Neoplastic Cells, Cultured,Cultured Neoplastic Cells,Cell, Cultured Neoplastic,Cell, Cultured Tumor,Cells, Cultured Neoplastic,Cells, Cultured Tumor,Cultured Neoplastic Cell,Cultured Tumor Cell,Neoplastic Cell, Cultured,Tumor Cell, Cultured
D014740 Vidarabine A nucleoside antibiotic isolated from Streptomyces antibioticus. It has some antineoplastic properties and has broad spectrum activity against DNA viruses in cell cultures and significant antiviral activity against infections caused by a variety of viruses such as the herpes viruses, the VACCINIA VIRUS and varicella zoster virus. Adenine Arabinoside,Ara-A,Arabinofuranosyladenine,Arabinosyladenine,9-beta-Arabinofuranosyladenine,9-beta-D-Arabinofuranosyladenine,Ara A,Vira-A,alpha-Ara A,alpha-D-Arabinofuranosyladenine,beta-Ara A,9 beta Arabinofuranosyladenine,9 beta D Arabinofuranosyladenine,Arabinoside, Adenine,Vira A,ViraA,alpha Ara A,alpha D Arabinofuranosyladenine,beta Ara A
D051379 Mice The common name for the genus Mus. Mice, House,Mus,Mus musculus,Mice, Laboratory,Mouse,Mouse, House,Mouse, Laboratory,Mouse, Swiss,Mus domesticus,Mus musculus domesticus,Swiss Mice,House Mice,House Mouse,Laboratory Mice,Laboratory Mouse,Mice, Swiss,Swiss Mouse,domesticus, Mus musculus
D019008 Drug Resistance, Neoplasm Resistance or diminished response of a neoplasm to an antineoplastic agent in humans, animals, or cell or tissue cultures. Antibiotic Resistance, Neoplasm,Antineoplastic Drug Resistance,Drug Resistance, Antineoplastic,Antineoplastic Agent Resistance,Neoplasm Drug Resistance,Resistance, Antineoplastic Agent,Resistance, Antineoplastic Drug

Related Publications

L Bai, and M Yamaguchi, and M Tatsumi, and K Kon, and M Bräutigam
June 1982, Biochemical pharmacology,
L Bai, and M Yamaguchi, and M Tatsumi, and K Kon, and M Bräutigam
April 1991, Molecular pharmacology,
L Bai, and M Yamaguchi, and M Tatsumi, and K Kon, and M Bräutigam
July 1982, Cancer research,
L Bai, and M Yamaguchi, and M Tatsumi, and K Kon, and M Bräutigam
September 1987, Biochemical pharmacology,
L Bai, and M Yamaguchi, and M Tatsumi, and K Kon, and M Bräutigam
November 1977, Biochemical pharmacology,
L Bai, and M Yamaguchi, and M Tatsumi, and K Kon, and M Bräutigam
June 1999, Bioorganic & medicinal chemistry,
L Bai, and M Yamaguchi, and M Tatsumi, and K Kon, and M Bräutigam
January 1980, Drug metabolism and disposition: the biological fate of chemicals,
L Bai, and M Yamaguchi, and M Tatsumi, and K Kon, and M Bräutigam
September 1990, The Journal of biological chemistry,
L Bai, and M Yamaguchi, and M Tatsumi, and K Kon, and M Bräutigam
May 1983, Cancer treatment reports,
Copied contents to your clipboard!