Three-dimensional structure of Pseudomonas isoamylase at 2.2 A resolution. 1998

Y Katsuya, and Y Mezaki, and M Kubota, and Y Matsuura
Hyogo Prefectural Institute of Industrial Research, Suma-ku, Kobe, 654-0037, Japan. ykatsuya@hyogo-kp.go.jp

The three-dimensional structure of isoamylase from Pseudomonas amyloderamosa, which hydrolyzes alpha-1,6-glucosidic linkages of amylopectin and glycogen, has been determined by X-ray structure analysis. The enzyme has 750 amino acid residues and a molecular mass of 80 kDa, and it can be crystallized from ammonium sulfate solution. The structure was elucidated by the multiple isomorphous replacement method and refined at 2.2 A resolution, resulting in a final R-factor of 0.161 for significant reflections with a root-mean-square deviation from ideality in bond lengths of 0.009 A. The analysis revealed that in the N-terminal region, isoamylase has a novel extra domain that we call domain N, whose three-dimensional structure has not so far been reported. It has a (beta/alpha)8-barrel-type supersecondary structure in the catalytic domain common to the alpha-amylase family enzymes, though the barrel is incomplete, with a deletion of an alpha-helix between the fifth and sixth beta-strands. A long excursed region is present between the third beta-strand and the third alpha-helix of the barrel but, in contrast to the so-called domain B that has been identified in the other enzymes of alpha-amylase family, it cannot be considered to be an independent domain, because this loop forms a globular cluster together with the loop between the fourth beta-strand and the fourth alpha-helix. Isoamylase contains a bound calcium ion, but this is not in the same position as the conserved calcium ion that has been reported in other alpha-amylase family enzymes.

UI MeSH Term Description Entries
D007517 Isoamylase An enzyme that hydrolyzes 1,6-alpha-glucosidic branch linkages in glycogen, amylopectin, and their beta-limit dextrins. It is distinguished from pullulanase (EC 3.2.1.41) by its inability to attack pullulan and by the feeble action of alpha-limit dextrins. It is distinguished from amylopectin 6-glucanohydrolase (EC 3.2.1.69) by its action on glycogen. With EC 3.2.1.69, it produces the activity called "debranching enzyme". EC 3.2.1.68.
D008958 Models, Molecular Models used experimentally or theoretically to study molecular shape, electronic properties, or interactions; includes analogous molecules, computer-generated graphics, and mechanical structures. Molecular Models,Model, Molecular,Molecular Model
D011549 Pseudomonas A genus of gram-negative, aerobic, rod-shaped bacteria widely distributed in nature. Some species are pathogenic for humans, animals, and plants. Chryseomonas,Pseudomona,Flavimonas
D002118 Calcium A basic element found in nearly all tissues. It is a member of the alkaline earth family of metals with the atomic symbol Ca, atomic number 20, and atomic weight 40. Calcium is the most abundant mineral in the body and combines with phosphorus to form calcium phosphate in the bones and teeth. It is essential for the normal functioning of nerves and muscles and plays a role in blood coagulation (as factor IV) and in many enzymatic processes. Coagulation Factor IV,Factor IV,Blood Coagulation Factor IV,Calcium-40,Calcium 40,Factor IV, Coagulation
D006860 Hydrogen Bonding A low-energy attractive force between hydrogen and another element. It plays a major role in determining the properties of water, proteins, and other compounds. Hydrogen Bonds,Bond, Hydrogen,Hydrogen Bond
D000595 Amino Acid Sequence The order of amino acids as they occur in a polypeptide chain. This is referred to as the primary structure of proteins. It is of fundamental importance in determining PROTEIN CONFORMATION. Protein Structure, Primary,Amino Acid Sequences,Sequence, Amino Acid,Sequences, Amino Acid,Primary Protein Structure,Primary Protein Structures,Protein Structures, Primary,Structure, Primary Protein,Structures, Primary Protein
D001665 Binding Sites The parts of a macromolecule that directly participate in its specific combination with another molecule. Combining Site,Binding Site,Combining Sites,Site, Binding,Site, Combining,Sites, Binding,Sites, Combining
D017124 Conserved Sequence A sequence of amino acids in a polypeptide or of nucleotides in DNA or RNA that is similar across multiple species. A known set of conserved sequences is represented by a CONSENSUS SEQUENCE. AMINO ACID MOTIFS are often composed of conserved sequences. Conserved Sequences,Sequence, Conserved,Sequences, Conserved
D017433 Protein Structure, Secondary The level of protein structure in which regular hydrogen-bond interactions within contiguous stretches of polypeptide chain give rise to ALPHA-HELICES; BETA-STRANDS (which align to form BETA-SHEETS), or other types of coils. This is the first folding level of protein conformation. Secondary Protein Structure,Protein Structures, Secondary,Secondary Protein Structures,Structure, Secondary Protein,Structures, Secondary Protein
D017434 Protein Structure, Tertiary The level of protein structure in which combinations of secondary protein structures (ALPHA HELICES; BETA SHEETS; loop regions, and AMINO ACID MOTIFS) pack together to form folded shapes. Disulfide bridges between cysteines in two different parts of the polypeptide chain along with other interactions between the chains play a role in the formation and stabilization of tertiary structure. Tertiary Protein Structure,Protein Structures, Tertiary,Tertiary Protein Structures

Related Publications

Y Katsuya, and Y Mezaki, and M Kubota, and Y Matsuura
January 1975, Proceedings of the National Academy of Sciences of the United States of America,
Y Katsuya, and Y Mezaki, and M Kubota, and Y Matsuura
May 1996, Plant physiology,
Y Katsuya, and Y Mezaki, and M Kubota, and Y Matsuura
September 1991, Journal of molecular biology,
Y Katsuya, and Y Mezaki, and M Kubota, and Y Matsuura
February 1991, The Journal of biological chemistry,
Y Katsuya, and Y Mezaki, and M Kubota, and Y Matsuura
December 1991, Journal of molecular biology,
Y Katsuya, and Y Mezaki, and M Kubota, and Y Matsuura
July 2000, Virology,
Y Katsuya, and Y Mezaki, and M Kubota, and Y Matsuura
September 1995, Acta crystallographica. Section D, Biological crystallography,
Y Katsuya, and Y Mezaki, and M Kubota, and Y Matsuura
November 1988, Journal of molecular biology,
Y Katsuya, and Y Mezaki, and M Kubota, and Y Matsuura
October 1995, Protein science : a publication of the Protein Society,
Y Katsuya, and Y Mezaki, and M Kubota, and Y Matsuura
April 2004, Acta crystallographica. Section D, Biological crystallography,
Copied contents to your clipboard!