Nitric oxide synthases: catalytic function and progress towards selective inhibition. 1998

B Mayer, and P Andrew
Institut für Pharmakologie und Toxikologie, Karl-Franzens-Universität Graz, Austria.

Biosynthesis of nitric oxide (NO) is performed by the dimeric, heme-containing enzyme nitric oxide synthase, which requires the flavins FAD and FMN, as well as the pteridine cofactor (6R)-5,6,7,8-tetrahydro-L-biopterin (H4biopterin) in order to catalyze the NADPH-dependent oxidation of L-arginine. The three major isoforms of nitric oxide synthase (NOS), although identical in that they contain a carboxy-terminal reductase and an amino-terminal oxygenase domain, fulfill diverse physiological functions, according to their differing expression patterns and mechanisms of activation. The pteridine H4biopterin, which affects both the conformational stability and activity of NOS, demonstrates anticooperative binding which results in the stoichiometric production of NO and O2-. Physiological mechanisms involving superoxide dismutase and reduced glutathione exist to avoid the subsequent formation of the potent oxidant peroxynitrite. With regard to inhibition of NO production, novel isoform-selective inhibitors are proving useful not only for dissecting the physiological functions of NOS, but also in the development of novel therapeutic agents.

UI MeSH Term Description Entries
D002384 Catalysis The facilitation of a chemical reaction by material (catalyst) that is not consumed by the reaction. Catalyses
D004791 Enzyme Inhibitors Compounds or agents that combine with an enzyme in such a manner as to prevent the normal substrate-enzyme combination and the catalytic reaction. Enzyme Inhibitor,Inhibitor, Enzyme,Inhibitors, Enzyme
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D013481 Superoxides Highly reactive compounds produced when oxygen is reduced by a single electron. In biological systems, they may be generated during the normal catalytic function of a number of enzymes and during the oxidation of hemoglobin to METHEMOGLOBIN. In living organisms, SUPEROXIDE DISMUTASE protects the cell from the deleterious effects of superoxides. Superoxide Radical,Superoxide,Superoxide Anion
D052247 Nitric Oxide Synthase Type II A CALCIUM-independent subtype of nitric oxide synthase that may play a role in immune function. It is an inducible enzyme whose expression is transcriptionally regulated by a variety of CYTOKINES. INOS Enzyme,Inducible NOS Protein,Inducible Nitric Oxide Synthase,NOS-II,Nitric Oxide Synthase II,Nitric Oxide Synthase, Type II,NOS II
D052248 Nitric Oxide Synthase Type I A CALCIUM-dependent, constitutively-expressed form of nitric oxide synthase found primarily in NERVE TISSUE. NCNOS Enzyme,NOS1 Protein,Neural Constitutive Nitric Oxide Synthase,Neuronal Nitric Oxide Synthase,Nitric Oxide Synthase, Type I,nNOS Enzyme
D019001 Nitric Oxide Synthase An NADPH-dependent enzyme that catalyzes the conversion of L-ARGININE and OXYGEN to produce CITRULLINE and NITRIC OXIDE. NO Synthase,Nitric-Oxide Synthase,Nitric-Oxide Synthetase,Nitric Oxide Synthetase,Oxide Synthase, Nitric,Synthase, Nitric Oxide

Related Publications

B Mayer, and P Andrew
August 2001, The Biochemical journal,
B Mayer, and P Andrew
January 1995, Annual review of physiology,
B Mayer, and P Andrew
April 2012, European heart journal,
B Mayer, and P Andrew
January 1996, Biochimie,
B Mayer, and P Andrew
January 2007, Frontiers in bioscience : a journal and virtual library,
B Mayer, and P Andrew
December 1994, International journal of cardiology,
B Mayer, and P Andrew
December 2002, Tanpakushitsu kakusan koso. Protein, nucleic acid, enzyme,
B Mayer, and P Andrew
October 1994, The Journal of biological chemistry,
B Mayer, and P Andrew
January 2005, Journal of inorganic biochemistry,
B Mayer, and P Andrew
February 2017, Nitric oxide : biology and chemistry,
Copied contents to your clipboard!