A whole-cell clamp study of dendrodendritic synaptic activities in mitral cells of turtle olfactory bulb slices. 1998

V Kirillova, and J W Lin
Department of Biology, Boston University, MA 02215, USA.

A procedure for preparing slices from the turtle olfactory bulb is described in this report. Individual layers of the bulb could be identified in the slices which enabled visual identification of cell types. Mitral cells retained extensive dendritic arborizations in slices of typical thickness, 300-400 microm. The presence of extensive dendritic processes was consistent with the difficulties we encountered in our attempt to achieve adequate space clamp. On the few occasions where an adequate space clamp of a mitral cell was achieved, calcium current exhibited a threshold of - 50 mV and reached its maximal level at - 10 mV. In all cases where calcium current was analysed (n=46), the current exhibited little inactivation. Depolarizing steps in 50% of the mitral cells triggered a burst of feedback synaptic activity after termination of the step. The intensity of feedback activity correlated closely with the amplitude of the depolarizing step, reaching its maximal level at - 10 mV and declining with further depolarization. The bell-shaped relationship between the feedback activity and mitral cell depolarization is consistent with the hypothesis that the feedback activity is mediated by reciprocal synapses on the mitral cell dendrite. This hypothesis is further supported by the inhibitory nature of the feedback synaptic activity: (i) the polarity of the feedback synaptic current could be inverted at the predicted chloride equilibrium potential, (ii) the feedback activity could be completely blocked by 10 microM bicuculline. The analysis of spontaneous synaptic activity showed that it was mostly inhibitory because its polarity could be reversed at the predicted chloride equilibrium potential. In some mitral cells, the frequency of spontaneous activity was noticeably increased when the holding potential was depolarized. This correlation could be attributed to the activation of dendrodendritic synapses. Results shown in this report demonstrate that dendrodendritic synapses are viable in turtle olfactory bulb slices. In addition, the suppression of feedback inhibition by large depolarizing steps of mitral cells suggests that the control of mitral cell dendritic potential is adequate to suppress calcium influx during large depolarizing steps.

UI MeSH Term Description Entries
D009830 Olfactory Bulb Ovoid body resting on the CRIBRIFORM PLATE of the ethmoid bone where the OLFACTORY NERVE terminates. The olfactory bulb contains several types of nerve cells including the mitral cells, on whose DENDRITES the olfactory nerve synapses, forming the olfactory glomeruli. The accessory olfactory bulb, which receives the projection from the VOMERONASAL ORGAN via the vomeronasal nerve, is also included here. Accessory Olfactory Bulb,Olfactory Tract,Bulbus Olfactorius,Lateral Olfactory Tract,Main Olfactory Bulb,Olfactory Glomerulus,Accessory Olfactory Bulbs,Bulb, Accessory Olfactory,Bulb, Main Olfactory,Bulb, Olfactory,Bulbs, Accessory Olfactory,Bulbs, Main Olfactory,Bulbs, Olfactory,Glomerulus, Olfactory,Lateral Olfactory Tracts,Main Olfactory Bulbs,Olfactorius, Bulbus,Olfactory Bulb, Accessory,Olfactory Bulb, Main,Olfactory Bulbs,Olfactory Bulbs, Accessory,Olfactory Bulbs, Main,Olfactory Tract, Lateral,Olfactory Tracts,Olfactory Tracts, Lateral,Tract, Lateral Olfactory,Tract, Olfactory,Tracts, Lateral Olfactory,Tracts, Olfactory
D003712 Dendrites Extensions of the nerve cell body. They are short and branched and receive stimuli from other NEURONS. Dendrite
D005246 Feedback A mechanism of communication within a system in that the input signal generates an output response which returns to influence the continued activity or productivity of that system. Feedbacks
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D013569 Synapses Specialized junctions at which a neuron communicates with a target cell. At classical synapses, a neuron's presynaptic terminal releases a chemical transmitter stored in synaptic vesicles which diffuses across a narrow synaptic cleft and activates receptors on the postsynaptic membrane of the target cell. The target may be a dendrite, cell body, or axon of another neuron, or a specialized region of a muscle or secretory cell. Neurons may also communicate via direct electrical coupling with ELECTRICAL SYNAPSES. Several other non-synaptic chemical or electric signal transmitting processes occur via extracellular mediated interactions. Synapse
D014426 Turtles Any reptile including tortoises, fresh water, and marine species of the order Testudines with a body encased in a bony or cartilaginous shell consisting of a top (carapace) and a bottom (plastron) derived from the ribs. Sea Turtles,Terrapins,Tortoises,Sea Turtle,Terrapin,Tortoise,Turtle,Turtle, Sea,Turtles, Sea
D015220 Calcium Channels Voltage-dependent cell membrane glycoproteins selectively permeable to calcium ions. They are categorized as L-, T-, N-, P-, Q-, and R-types based on the activation and inactivation kinetics, ion specificity, and sensitivity to drugs and toxins. The L- and T-types are present throughout the cardiovascular and central nervous systems and the N-, P-, Q-, & R-types are located in neuronal tissue. Ion Channels, Calcium,Receptors, Calcium Channel Blocker,Voltage-Dependent Calcium Channel,Calcium Channel,Calcium Channel Antagonist Receptor,Calcium Channel Antagonist Receptors,Calcium Channel Blocker Receptor,Calcium Channel Blocker Receptors,Ion Channel, Calcium,Receptors, Calcium Channel Antagonist,VDCC,Voltage-Dependent Calcium Channels,Calcium Channel, Voltage-Dependent,Calcium Channels, Voltage-Dependent,Calcium Ion Channel,Calcium Ion Channels,Channel, Voltage-Dependent Calcium,Channels, Voltage-Dependent Calcium,Voltage Dependent Calcium Channel,Voltage Dependent Calcium Channels
D015222 Sodium Channels Ion channels that specifically allow the passage of SODIUM ions. A variety of specific sodium channel subtypes are involved in serving specialized functions such as neuronal signaling, CARDIAC MUSCLE contraction, and KIDNEY function. Ion Channels, Sodium,Ion Channel, Sodium,Sodium Channel,Sodium Ion Channels,Channel, Sodium,Channel, Sodium Ion,Channels, Sodium,Channels, Sodium Ion,Sodium Ion Channel
D017966 Pyramidal Cells Projection neurons in the CEREBRAL CORTEX and the HIPPOCAMPUS. Pyramidal cells have a pyramid-shaped soma with the apex and an apical dendrite pointed toward the pial surface and other dendrites and an axon emerging from the base. The axons may have local collaterals but also project outside their cortical region. Pyramidal Neurons,Cell, Pyramidal,Cells, Pyramidal,Neuron, Pyramidal,Neurons, Pyramidal,Pyramidal Cell,Pyramidal Neuron
D018408 Patch-Clamp Techniques An electrophysiologic technique for studying cells, cell membranes, and occasionally isolated organelles. All patch-clamp methods rely on a very high-resistance seal between a micropipette and a membrane; the seal is usually attained by gentle suction. The four most common variants include on-cell patch, inside-out patch, outside-out patch, and whole-cell clamp. Patch-clamp methods are commonly used to voltage clamp, that is control the voltage across the membrane and measure current flow, but current-clamp methods, in which the current is controlled and the voltage is measured, are also used. Patch Clamp Technique,Patch-Clamp Technic,Patch-Clamp Technique,Voltage-Clamp Technic,Voltage-Clamp Technique,Voltage-Clamp Techniques,Whole-Cell Recording,Patch-Clamp Technics,Voltage-Clamp Technics,Clamp Technique, Patch,Clamp Techniques, Patch,Patch Clamp Technic,Patch Clamp Technics,Patch Clamp Techniques,Recording, Whole-Cell,Recordings, Whole-Cell,Technic, Patch-Clamp,Technic, Voltage-Clamp,Technics, Patch-Clamp,Technics, Voltage-Clamp,Technique, Patch Clamp,Technique, Patch-Clamp,Technique, Voltage-Clamp,Techniques, Patch Clamp,Techniques, Patch-Clamp,Techniques, Voltage-Clamp,Voltage Clamp Technic,Voltage Clamp Technics,Voltage Clamp Technique,Voltage Clamp Techniques,Whole Cell Recording,Whole-Cell Recordings

Related Publications

V Kirillova, and J W Lin
October 1975, The Journal of physiology,
V Kirillova, and J W Lin
January 1996, Brain research bulletin,
V Kirillova, and J W Lin
May 1981, The Journal of physiology,
V Kirillova, and J W Lin
September 1981, Journal of neurophysiology,
V Kirillova, and J W Lin
July 1999, Journal of neurophysiology,
V Kirillova, and J W Lin
January 1966, Experimental neurology,
V Kirillova, and J W Lin
September 2008, The Journal of neuroscience : the official journal of the Society for Neuroscience,
Copied contents to your clipboard!