A novel aminopeptidase associated with the 60 kDa chaperonin in the thermophilic archaeon Sulfolobus solfataricus. 1998

I Condò, and D Ruggero, and R Reinhardt, and P Londei
Dipartimento di Biotecnologie Cellulari ed Ematologia, Universita' di Roma La Sapienza, Italy.

The chaperonins are high-molecular-weight protein complexes having a characteristic double-ring toroidal shape; they are thought to aid the folding of denatured or newly synthesized polypeptides. These proteins exist as two functionally similar but distantly related families, one including the bacterial and organellar chaperonins and the other (termed the CCT-TRiC family) including the chaperonins of the Archaea and the eukaryotes. The CCT-TRiC chaperonins, particularly their archeal members, are less well known than their bacterial counterparts, and their main cellular function is still doubtful. In this work, we report that the chaperonin of the thermophilic archaeon Sulfolobus solfataricus interacts with several polypeptides other than the two subunits that constitute the 18-mer double-ring structure. We have cloned and sequenced the gene encoding one 90 kDa chaperonin-associated protein and have shown, using biochemical assays, that the product is an enzyme belonging to the family of zinc-dependent aminopeptidases. The Sulfolobus protein shows maximal homology to eukaryotic (yeast and mouse) aminopeptidases. It contains a leucine zipper motif and can be phosphorylated by an unidentified kinase present in the cell extracts. The possible significance of an association between an aminopeptidase and a chaperonin is discussed.

UI MeSH Term Description Entries
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D010750 Phosphoproteins Phosphoprotein
D011401 Promoter Regions, Genetic DNA sequences which are recognized (directly or indirectly) and bound by a DNA-dependent RNA polymerase during the initiation of transcription. Highly conserved sequences within the promoter include the Pribnow box in bacteria and the TATA BOX in eukaryotes. rRNA Promoter,Early Promoters, Genetic,Late Promoters, Genetic,Middle Promoters, Genetic,Promoter Regions,Promoter, Genetic,Promotor Regions,Promotor, Genetic,Pseudopromoter, Genetic,Early Promoter, Genetic,Genetic Late Promoter,Genetic Middle Promoters,Genetic Promoter,Genetic Promoter Region,Genetic Promoter Regions,Genetic Promoters,Genetic Promotor,Genetic Promotors,Genetic Pseudopromoter,Genetic Pseudopromoters,Late Promoter, Genetic,Middle Promoter, Genetic,Promoter Region,Promoter Region, Genetic,Promoter, Genetic Early,Promoter, rRNA,Promoters, Genetic,Promoters, Genetic Middle,Promoters, rRNA,Promotor Region,Promotors, Genetic,Pseudopromoters, Genetic,Region, Genetic Promoter,Region, Promoter,Region, Promotor,Regions, Genetic Promoter,Regions, Promoter,Regions, Promotor,rRNA Promoters
D011817 Rabbits A burrowing plant-eating mammal with hind limbs that are longer than its fore limbs. It belongs to the family Leporidae of the order Lagomorpha, and in contrast to hares, possesses 22 instead of 24 pairs of chromosomes. Belgian Hare,New Zealand Rabbit,New Zealand Rabbits,New Zealand White Rabbit,Rabbit,Rabbit, Domestic,Chinchilla Rabbits,NZW Rabbits,New Zealand White Rabbits,Oryctolagus cuniculus,Chinchilla Rabbit,Domestic Rabbit,Domestic Rabbits,Hare, Belgian,NZW Rabbit,Rabbit, Chinchilla,Rabbit, NZW,Rabbit, New Zealand,Rabbits, Chinchilla,Rabbits, Domestic,Rabbits, NZW,Rabbits, New Zealand,Zealand Rabbit, New,Zealand Rabbits, New,cuniculus, Oryctolagus
D003001 Cloning, Molecular The insertion of recombinant DNA molecules from prokaryotic and/or eukaryotic sources into a replicating vehicle, such as a plasmid or virus vector, and the introduction of the resultant hybrid molecules into recipient cells without altering the viability of those cells. Molecular Cloning
D004789 Enzyme Activation Conversion of an inactive form of an enzyme to one possessing metabolic activity. It includes 1, activation by ions (activators); 2, activation by cofactors (coenzymes); and 3, conversion of an enzyme precursor (proenzyme or zymogen) to an active enzyme. Activation, Enzyme,Activations, Enzyme,Enzyme Activations
D000595 Amino Acid Sequence The order of amino acids as they occur in a polypeptide chain. This is referred to as the primary structure of proteins. It is of fundamental importance in determining PROTEIN CONFORMATION. Protein Structure, Primary,Amino Acid Sequences,Sequence, Amino Acid,Sequences, Amino Acid,Primary Protein Structure,Primary Protein Structures,Protein Structures, Primary,Structure, Primary Protein,Structures, Primary Protein
D000626 Aminopeptidases A subclass of EXOPEPTIDASES that act on the free N terminus end of a polypeptide liberating a single amino acid residue. EC 3.4.11. Aminopeptidase
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001483 Base Sequence The sequence of PURINES and PYRIMIDINES in nucleic acids and polynucleotides. It is also called nucleotide sequence. DNA Sequence,Nucleotide Sequence,RNA Sequence,DNA Sequences,Base Sequences,Nucleotide Sequences,RNA Sequences,Sequence, Base,Sequence, DNA,Sequence, Nucleotide,Sequence, RNA,Sequences, Base,Sequences, DNA,Sequences, Nucleotide,Sequences, RNA

Related Publications

I Condò, and D Ruggero, and R Reinhardt, and P Londei
September 1994, Journal of molecular biology,
I Condò, and D Ruggero, and R Reinhardt, and P Londei
July 1997, Journal of cellular biochemistry,
I Condò, and D Ruggero, and R Reinhardt, and P Londei
October 2001, Biochemical and biophysical research communications,
I Condò, and D Ruggero, and R Reinhardt, and P Londei
October 2000, The Journal of biological chemistry,
I Condò, and D Ruggero, and R Reinhardt, and P Londei
August 1999, Journal of molecular biology,
I Condò, and D Ruggero, and R Reinhardt, and P Londei
January 2005, Research in microbiology,
I Condò, and D Ruggero, and R Reinhardt, and P Londei
September 1998, Journal of structural biology,
I Condò, and D Ruggero, and R Reinhardt, and P Londei
July 2001, Journal of bacteriology,
I Condò, and D Ruggero, and R Reinhardt, and P Londei
February 1995, FEBS letters,
I Condò, and D Ruggero, and R Reinhardt, and P Londei
March 1995, Biochemical and biophysical research communications,
Copied contents to your clipboard!