Restricted expression of the gap junctional protein connexin 43 in the arterial system of the rat. 1998

T Hong, and C E Hill
Division of Neuroscience, John Curtin School of Medical Research, Australian National University, Canberra, ACT.

Connexin 43 (Cx43) has been reported to be expressed in vascular smooth muscle cells and endothelial cells. Evidence for possible variations in Cx43 distribution within different parts of the vascular system is limited. We have therefore investigated the expression of Cx43 in the endothelia and media of 11 vessels of different size and function in the rat, using immunofluorescence and confocal laser scanning microscopy. The results showed that punctate Cx43 staining was abundant in the endothelia and media of all of the 5 elastic arteries examined. In the media, the amount of Cx43 staining decreased as the size of the elastic arteries became smaller. In the 6 muscular arteries examined, 2 different patterns of Cx43 staining were observed. In the first type, Cx43 expression was high in the endothelium but virtually absent from the media. Mesenteric resistance, hepatic and tail arteries were examples. In the second type, Cx43 staining was absent from both the media and the endothelia. The coronary, basilar, and middle cerebral arteries showed this appearance. The results suggest that expression of Cx43 is largely restricted to elastic arteries in the arterial system of the rat. The lack of immunodetectable Cx43 from the media of all muscular arteries examined, and from the endothelia of some of these arteries, raises the possibility of significant differences in the form of expression of Cx43 in these vessels or the presence of other connexins.

UI MeSH Term Description Entries
D008297 Male Males
D009131 Muscle, Smooth, Vascular The nonstriated involuntary muscle tissue of blood vessels. Vascular Smooth Muscle,Muscle, Vascular Smooth,Muscles, Vascular Smooth,Smooth Muscle, Vascular,Smooth Muscles, Vascular,Vascular Smooth Muscles
D011921 Rats, Inbred WKY A strain of Rattus norvegicus used as a normotensive control for the spontaneous hypertensive rats (SHR). Rats, Wistar Kyoto,Wistar Kyoto Rat,Rats, WKY,Inbred WKY Rat,Inbred WKY Rats,Kyoto Rat, Wistar,Rat, Inbred WKY,Rat, WKY,Rat, Wistar Kyoto,WKY Rat,WKY Rat, Inbred,WKY Rats,WKY Rats, Inbred,Wistar Kyoto Rats
D002339 Carotid Arteries Either of the two principal arteries on both sides of the neck that supply blood to the head and neck; each divides into two branches, the internal carotid artery and the external carotid artery. Arteries, Carotid,Artery, Carotid,Carotid Artery
D002536 Cerebral Arteries The arterial blood vessels supplying the CEREBRUM. Arteries, Cerebral,Artery, Cerebral,Cerebral Artery
D003331 Coronary Vessels The veins and arteries of the HEART. Coronary Arteries,Sinus Node Artery,Coronary Veins,Arteries, Coronary,Arteries, Sinus Node,Artery, Coronary,Artery, Sinus Node,Coronary Artery,Coronary Vein,Coronary Vessel,Sinus Node Arteries,Vein, Coronary,Veins, Coronary,Vessel, Coronary,Vessels, Coronary
D004547 Elastic Tissue Connective tissue comprised chiefly of elastic fibers. Elastic fibers have two components: ELASTIN and MICROFIBRILS. Elastic Fibers,Elastic Fiber,Elastic Tissues,Fiber, Elastic,Fibers, Elastic,Tissue, Elastic,Tissues, Elastic
D004730 Endothelium, Vascular Single pavement layer of cells which line the luminal surface of the entire vascular system and regulate the transport of macromolecules and blood components. Capillary Endothelium,Vascular Endothelium,Capillary Endotheliums,Endothelium, Capillary,Endotheliums, Capillary,Endotheliums, Vascular,Vascular Endotheliums
D005260 Female Females
D005455 Fluorescent Antibody Technique Test for tissue antigen using either a direct method, by conjugation of antibody with fluorescent dye (FLUORESCENT ANTIBODY TECHNIQUE, DIRECT) or an indirect method, by formation of antigen-antibody complex which is then labeled with fluorescein-conjugated anti-immunoglobulin antibody (FLUORESCENT ANTIBODY TECHNIQUE, INDIRECT). The tissue is then examined by fluorescence microscopy. Antinuclear Antibody Test, Fluorescent,Coon's Technique,Fluorescent Antinuclear Antibody Test,Fluorescent Protein Tracing,Immunofluorescence Technique,Coon's Technic,Fluorescent Antibody Technic,Immunofluorescence,Immunofluorescence Technic,Antibody Technic, Fluorescent,Antibody Technics, Fluorescent,Antibody Technique, Fluorescent,Antibody Techniques, Fluorescent,Coon Technic,Coon Technique,Coons Technic,Coons Technique,Fluorescent Antibody Technics,Fluorescent Antibody Techniques,Fluorescent Protein Tracings,Immunofluorescence Technics,Immunofluorescence Techniques,Protein Tracing, Fluorescent,Protein Tracings, Fluorescent,Technic, Coon's,Technic, Fluorescent Antibody,Technic, Immunofluorescence,Technics, Fluorescent Antibody,Technics, Immunofluorescence,Technique, Coon's,Technique, Fluorescent Antibody,Technique, Immunofluorescence,Techniques, Fluorescent Antibody,Techniques, Immunofluorescence,Tracing, Fluorescent Protein,Tracings, Fluorescent Protein

Related Publications

T Hong, and C E Hill
September 2008, Chinese medical journal,
T Hong, and C E Hill
May 2000, American journal of obstetrics and gynecology,
T Hong, and C E Hill
November 1990, Journal of molecular and cellular cardiology,
T Hong, and C E Hill
May 2000, Journal of bone and mineral research : the official journal of the American Society for Bone and Mineral Research,
T Hong, and C E Hill
July 2018, Biochimica et biophysica acta. Molecular cell research,
T Hong, and C E Hill
August 1991, European journal of biochemistry,
Copied contents to your clipboard!