Deficient processing and activity of type I insulin-like growth factor receptor in the furin-deficient LoVo-C5 cells. 1998

M Lehmann, and F André, and C Bellan, and M Remacle-Bonnet, and F Garrouste, and F Parat, and J C Lissitsky, and J Marvaldi, and G Pommier
Unité Interactions entre Systèmes Protéiques et Différenciation dans la Cellule Tumorale, UPRES-A CNRS 6032, Université d'Aix-Marseille I, Faculté de Pharmacie, France.

To investigate endoproteolytic processing of the type I insulin-like growth factor receptor (IGF-IR), we have examined its structure and activity in the furin-deficient LoVo-C5 cell line. Immunoprecipitation experiments using the monoclonal anti-IGF-IR antibody (alpha-IR3) showed that LoVo-C5 cells expressed a major high molecular mass receptor (200 kDa) corresponding to the unprocessed alpha/beta pro-receptor. A small amount of successfully cleaved alpha/beta heterodimers was also produced, indicating a residual endoproteolytic cleavage activity in these cells. In vitro, a soluble form of recombinant furin was able to cleave the pro-IGF-IR (200 kDa) into alpha-subunit (130 kDa) and beta-subunit (97 kDa). Measurement of IGF binding parameters in LoVo-C5 cells indicated a low number of typical type I IGF-binding sites (binding capacity, 5 x 10(3) sites/cell; Kd, 1.9 nM for IGF-I and 7.0 nM for IGF-II). These findings in LoVo-C5 contrast with those in HT29-D4 cells, which have active furin, and where IGF-IR (2.8 x 10(4) sites/cell) was fully processed. Moreover, the 200-kDa pro-IGF-IR of LoVo-C5 was unable to induce intracellular signaling, such as beta-subunit tyrosine autophosphorylation and insulin-related substrate-1 tyrosine phosphorylation. Flow immunocytometry analysis using alpha-IR3 antibody indicated that LoVo-C5 cells expressed 40% more receptors than HT29-D4 cells, suggesting that in LoVo-C5 cells only the small amount of mature type I IGF-IR binds IGFs with high affinity. To provide evidence for this idea, we showed that mild trypsin treatment of living LoVo-C5 cells partially restored alpha/beta cleavage of IGF-IR, and greatly enhanced (6-fold) the IGF-I binding capacity of LoVo-C5 cells, but did not restore IGF-IR signaling activity. Moreover, LoVo-C5 cells were totally unresponsive to IGF-I in terms of cell migration, in contrast to fully processed IGF-IR-HT29-D4 cells. Our data indicate that furin is involved in the endoproteolytic processing of the IGF-IR and suggest that this posttranslational event might be crucial for its ligand binding and signaling activities. However, our data do not exclude that other proprotein convertases could participate to IGF-IR maturation.

UI MeSH Term Description Entries
D007334 Insulin-Like Growth Factor I A well-characterized basic peptide believed to be secreted by the liver and to circulate in the blood. It has growth-regulating, insulin-like, and mitogenic activities. This growth factor has a major, but not absolute, dependence on GROWTH HORMONE. It is believed to be mainly active in adults in contrast to INSULIN-LIKE GROWTH FACTOR II, which is a major fetal growth factor. IGF-I,Somatomedin C,IGF-1,IGF-I-SmC,Insulin Like Growth Factor I,Insulin-Like Somatomedin Peptide I,Insulin Like Somatomedin Peptide I
D010766 Phosphorylation The introduction of a phosphoryl group into a compound through the formation of an ester bond between the compound and a phosphorus moiety. Phosphorylations
D011499 Protein Processing, Post-Translational Any of various enzymatically catalyzed post-translational modifications of PEPTIDES or PROTEINS in the cell of origin. These modifications include carboxylation; HYDROXYLATION; ACETYLATION; PHOSPHORYLATION; METHYLATION; GLYCOSYLATION; ubiquitination; oxidation; proteolysis; and crosslinking and result in changes in molecular weight and electrophoretic motility. Amino Acid Modification, Post-Translational,Post-Translational Modification,Post-Translational Protein Modification,Posttranslational Modification,Protein Modification, Post-Translational,Amino Acid Modification, Posttranslational,Post-Translational Amino Acid Modification,Post-Translational Modifications,Post-Translational Protein Processing,Posttranslational Amino Acid Modification,Posttranslational Modifications,Posttranslational Protein Processing,Protein Processing, Post Translational,Protein Processing, Posttranslational,Amino Acid Modification, Post Translational,Modification, Post-Translational,Modification, Post-Translational Protein,Modification, Posttranslational,Modifications, Post-Translational,Modifications, Post-Translational Protein,Modifications, Posttranslational,Post Translational Amino Acid Modification,Post Translational Modification,Post Translational Modifications,Post Translational Protein Modification,Post Translational Protein Processing,Post-Translational Protein Modifications,Processing, Post-Translational Protein,Processing, Posttranslational Protein,Protein Modification, Post Translational,Protein Modifications, Post-Translational
D002465 Cell Movement The movement of cells from one location to another. Distinguish from CYTOKINESIS which is the process of dividing the CYTOPLASM of a cell. Cell Migration,Locomotion, Cell,Migration, Cell,Motility, Cell,Movement, Cell,Cell Locomotion,Cell Motility,Cell Movements,Movements, Cell
D004351 Drug Resistance Diminished or failed response of an organism, disease or tissue to the intended effectiveness of a chemical or drug. It should be differentiated from DRUG TOLERANCE which is the progressive diminution of the susceptibility of a human or animal to the effects of a drug, as a result of continued administration. Resistance, Drug
D005098 Exotoxins Toxins produced, especially by bacterial or fungal cells, and released into the culture medium or environment. Exotoxin
D005434 Flow Cytometry Technique using an instrument system for making, processing, and displaying one or more measurements on individual cells obtained from a cell suspension. Cells are usually stained with one or more fluorescent dyes specific to cell components of interest, e.g., DNA, and fluorescence of each cell is measured as it rapidly transverses the excitation beam (laser or mercury arc lamp). Fluorescence provides a quantitative measure of various biochemical and biophysical properties of the cell, as well as a basis for cell sorting. Other measurable optical parameters include light absorption and light scattering, the latter being applicable to the measurement of cell size, shape, density, granularity, and stain uptake. Cytofluorometry, Flow,Cytometry, Flow,Flow Microfluorimetry,Fluorescence-Activated Cell Sorting,Microfluorometry, Flow,Cell Sorting, Fluorescence-Activated,Cell Sortings, Fluorescence-Activated,Cytofluorometries, Flow,Cytometries, Flow,Flow Cytofluorometries,Flow Cytofluorometry,Flow Cytometries,Flow Microfluorometries,Flow Microfluorometry,Fluorescence Activated Cell Sorting,Fluorescence-Activated Cell Sortings,Microfluorimetry, Flow,Microfluorometries, Flow,Sorting, Fluorescence-Activated Cell,Sortings, Fluorescence-Activated Cell
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000097668 Pseudomonas aeruginosa Exotoxin A An NAD-dependent ADP-ribosyltransferase that catalyzes the transfer of the ADP ribosyl moiety of oxidized NAD onto elongation factor 2 (EF-2) thus arresting protein synthesis. Commonly used as the toxin in immunotoxins. Exotoxin A, Pseudomonas,Exotoxin A, Pseudomonas aeruginosa,Recombinant Truncated Pseudomonas Exotoxin A, Form PE38QQR,Recombinant Truncated Pseudomonas Exotoxin A, Form PE40,ToxA protein, Pseudomonas aeruginosa,ETA, Pseudomonas,PE38QQR,PE40 toxin
D001427 Bacterial Toxins Toxic substances formed in or elaborated by bacteria; they are usually proteins with high molecular weight and antigenicity; some are used as antibiotics and some to skin test for the presence of or susceptibility to certain diseases. Bacterial Toxin,Toxins, Bacterial,Toxin, Bacterial

Related Publications

M Lehmann, and F André, and C Bellan, and M Remacle-Bonnet, and F Garrouste, and F Parat, and J C Lissitsky, and J Marvaldi, and G Pommier
January 1989, Hormone and metabolic research = Hormon- und Stoffwechselforschung = Hormones et metabolisme,
M Lehmann, and F André, and C Bellan, and M Remacle-Bonnet, and F Garrouste, and F Parat, and J C Lissitsky, and J Marvaldi, and G Pommier
July 1996, The American journal of physiology,
M Lehmann, and F André, and C Bellan, and M Remacle-Bonnet, and F Garrouste, and F Parat, and J C Lissitsky, and J Marvaldi, and G Pommier
August 2022, Structure (London, England : 1993),
M Lehmann, and F André, and C Bellan, and M Remacle-Bonnet, and F Garrouste, and F Parat, and J C Lissitsky, and J Marvaldi, and G Pommier
September 1990, American journal of respiratory cell and molecular biology,
M Lehmann, and F André, and C Bellan, and M Remacle-Bonnet, and F Garrouste, and F Parat, and J C Lissitsky, and J Marvaldi, and G Pommier
June 2002, Clinical cancer research : an official journal of the American Association for Cancer Research,
M Lehmann, and F André, and C Bellan, and M Remacle-Bonnet, and F Garrouste, and F Parat, and J C Lissitsky, and J Marvaldi, and G Pommier
December 1989, The Journal of biological chemistry,
M Lehmann, and F André, and C Bellan, and M Remacle-Bonnet, and F Garrouste, and F Parat, and J C Lissitsky, and J Marvaldi, and G Pommier
December 1999, Endocrinology,
M Lehmann, and F André, and C Bellan, and M Remacle-Bonnet, and F Garrouste, and F Parat, and J C Lissitsky, and J Marvaldi, and G Pommier
September 1998, The Journal of clinical endocrinology and metabolism,
M Lehmann, and F André, and C Bellan, and M Remacle-Bonnet, and F Garrouste, and F Parat, and J C Lissitsky, and J Marvaldi, and G Pommier
September 1985, The Journal of biological chemistry,
M Lehmann, and F André, and C Bellan, and M Remacle-Bonnet, and F Garrouste, and F Parat, and J C Lissitsky, and J Marvaldi, and G Pommier
July 2009, Neoplasia (New York, N.Y.),
Copied contents to your clipboard!