Peptide YY, glucagon-like peptide-1, and neurotensin responses to luminal factors in the isolated vascularly perfused rat ileum. 1998

V Dumoulin, and F Moro, and A Barcelo, and T Dakka, and J C Cuber
INSERM U-45, Hôpital Edouard Herriot, Lyon, France.

Exposure of the ileum to nutrients markedly inhibits several upper gastrointestinal functions. Hormonal peptides of the ileal wall, i.e. peptide YY (PYY), glucagon-like peptide-1 (GLP-1), and neurotensin (NT), are thought to play a role in this negative feedback mechanism. The present study was conducted to comparatively assess the secretion of PYY, GLP-1, and NT upon luminal infusion of a variety of individual luminal factors in the isolated vascularly perfused rat ileum preparation. PYY, GLP-1, and NT were measured in the portal effluent with specific RIAs. Glucose (250 mM) induced a pronounced release of the three peptides, whereas a physiological concentration of 5 mM did not induce peptide secretion. Peptone (5%, wt/vol) evoked a sustained release of PYY, GLP-1, and NT. Only NT secretion was increased upon luminal administration of 100 mM sodium oleate. Short chain fatty acids (20 mM) evoked an early and transient release of the three peptides. In contrast, taurocholate (20 mM) induced a sustained release of PYY, GLP-1, and NT, but the threshold concentration for peptide release was lower for NT than for PYY or GLP-1. Cellulose or pectin (0.5%, wt/vol) did not modify peptide secretion. In conclusion, glucose and peptone are potent stimulants of PYY, GLP-1, and NT release. Only NT is released upon oleic acid stimulation. Finally, taurocholate is a potent stimulant of the release of the three peptides. Overall, PYY, GLP-1, and NT may participate cooperatively in the ileal brake. As relatively high concentrations of the various stimulants were required to elicit peptide release, it seems likely that this mechanism operates in cases of maldigestion or malabsorption.

UI MeSH Term Description Entries
D007082 Ileum The distal and narrowest portion of the SMALL INTESTINE, between the JEJUNUM and the ILEOCECAL VALVE of the LARGE INTESTINE.
D008297 Male Males
D009496 Neurotensin A biologically active tridecapeptide isolated from the hypothalamus. It has been shown to induce hypotension in the rat, to stimulate contraction of guinea pig ileum and rat uterus, and to cause relaxation of rat duodenum. There is also evidence that it acts as both a peripheral and a central nervous system neurotransmitter.
D010446 Peptide Fragments Partial proteins formed by partial hydrolysis of complete proteins or generated through PROTEIN ENGINEERING techniques. Peptide Fragment,Fragment, Peptide,Fragments, Peptide
D010477 Perfusion Treatment process involving the injection of fluid into an organ or tissue. Perfusions
D011498 Protein Precursors Precursors, Protein
D005227 Fatty Acids Organic, monobasic acids derived from hydrocarbons by the equivalent of oxidation of a methyl group to an alcohol, aldehyde, and then acid. Fatty acids are saturated and unsaturated (FATTY ACIDS, UNSATURATED). (Grant & Hackh's Chemical Dictionary, 5th ed) Aliphatic Acid,Esterified Fatty Acid,Fatty Acid,Fatty Acids, Esterified,Fatty Acids, Saturated,Saturated Fatty Acid,Aliphatic Acids,Acid, Aliphatic,Acid, Esterified Fatty,Acid, Saturated Fatty,Esterified Fatty Acids,Fatty Acid, Esterified,Fatty Acid, Saturated,Saturated Fatty Acids
D005934 Glucagon A 29-amino acid pancreatic peptide derived from proglucagon which is also the precursor of intestinal GLUCAGON-LIKE PEPTIDES. Glucagon is secreted by PANCREATIC ALPHA CELLS and plays an important role in regulation of BLOOD GLUCOSE concentration, ketone metabolism, and several other biochemical and physiological processes. (From Gilman et al., Goodman and Gilman's The Pharmacological Basis of Therapeutics, 9th ed, p1511) Glucagon (1-29),Glukagon,HG-Factor,Hyperglycemic-Glycogenolytic Factor,Proglucagon (33-61),HG Factor,Hyperglycemic Glycogenolytic Factor
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D000824 Animal Nutritional Physiological Phenomena Nutritional physiology of animals. Animal Nutrition Physiology,Animal Nutritional Physiology Phenomena,Animal Nutritional Physiological Phenomenon,Animal Nutritional Physiology,Animal Nutritional Physiology Phenomenon,Veterinary Nutritional Physiology,Nutrition Physiologies, Animal,Nutrition Physiology, Animal,Nutritional Physiology, Animal,Nutritional Physiology, Veterinary,Physiology, Animal Nutrition,Physiology, Animal Nutritional,Physiology, Veterinary Nutritional

Related Publications

V Dumoulin, and F Moro, and A Barcelo, and T Dakka, and J C Cuber
December 1996, The Journal of endocrinology,
V Dumoulin, and F Moro, and A Barcelo, and T Dakka, and J C Cuber
June 1995, The Journal of endocrinology,
V Dumoulin, and F Moro, and A Barcelo, and T Dakka, and J C Cuber
February 1994, Endocrinology,
V Dumoulin, and F Moro, and A Barcelo, and T Dakka, and J C Cuber
January 1995, Peptides,
V Dumoulin, and F Moro, and A Barcelo, and T Dakka, and J C Cuber
August 1990, The American journal of physiology,
V Dumoulin, and F Moro, and A Barcelo, and T Dakka, and J C Cuber
March 2000, Peptides,
V Dumoulin, and F Moro, and A Barcelo, and T Dakka, and J C Cuber
June 1995, Scandinavian journal of gastroenterology,
V Dumoulin, and F Moro, and A Barcelo, and T Dakka, and J C Cuber
March 1997, Acta diabetologica,
V Dumoulin, and F Moro, and A Barcelo, and T Dakka, and J C Cuber
February 2000, Gut,
Copied contents to your clipboard!