Analysis of the polymerization kinetics of homodimeric EIAV p51/51 reverse transcriptase implies the formation of a polymerase active site identical to heterodimeric EIAV p66/51 reverse transcriptase. 1998

M Souquet, and T Restle, and R Krebs, and S F Le Grice, and R S Goody, and B M Wöhrl
Max-Planck-Institut für Molekulare Physiologie, Abteilung Physikalische Biochemie, Dortmund, Germany.

Homodimeric EIAV p51/51 and heterodimeric EIAV p66/51 reverse transcriptase were purified in order to compare the different modes of DNA synthesis supported by the enzymes. Analysis of the dimerization behavior of the EIAV enzymes indicates that the dimer stability of EIAV reverse transcriptase enzymes is higher than that of their HIV-1 reverse transcriptase counterparts. EIAV p51/51 polymerizes DNA distributively whereas DNA synthesis by EIAV p66/51 is processive. Steady-state and pre-steady-state kinetic analyses of primer/template binding and nucleotide incorporation were performed with both enzymes to determine the reasons for the different polymerization behavior. Equilibrium fluorescence titrations demonstrated that the Kd values of EIAV p51/51 for binding of DNA/DNA and DNA/RNA substrates are increased 10-fold and 28-fold, respectively, as compared to EIAV p66/51. Stopped-flow measurements with DNA/DNA show that the increase in the Kd is in part due to a 17. 4-fold higher dissociation rate constant (k-1) for EIAV p51/51. Additionally, with EIAV p51/51, kdiss is increased 7-fold for DNA/DNA and 14-fold for DNA/RNA primer/template substrates, respectively. The lack of the RNase H domain in EIAV p51/51 leads to differences in the pre-steady-state kinetics of nucleotide incorporation on DNA/DNA and DNA/RNA templates. The burst of both enzymes is composed of two phases for both substrates, and the values for the corresponding pre-steady-state burst rates, kpol1 and kpol2, are similar for both enzymes, implying the formation of identical polymerase active sites. However, the amplitudes of the two phases differ with DNA/DNA templates, indicating a different distribution between two states varying greatly in their kinetic competence.

UI MeSH Term Description Entries
D007700 Kinetics The rate dynamics in chemical or physical systems.
D009838 Oligodeoxyribonucleotides A group of deoxyribonucleotides (up to 12) in which the phosphate residues of each deoxyribonucleotide act as bridges in forming diester linkages between the deoxyribose moieties. Oligodeoxynucleotide,Oligodeoxyribonucleotide,Oligodeoxynucleotides
D011108 Polymers Compounds formed by the joining of smaller, usually repeating, units linked by covalent bonds. These compounds often form large macromolecules (e.g., BIOPOLYMERS; PLASTICS). Polymer
D011487 Protein Conformation The characteristic 3-dimensional shape of a protein, including the secondary, supersecondary (motifs), tertiary (domains) and quaternary structure of the peptide chain. PROTEIN STRUCTURE, QUATERNARY describes the conformation assumed by multimeric proteins (aggregates of more than one polypeptide chain). Conformation, Protein,Conformations, Protein,Protein Conformations
D004247 DNA A deoxyribonucleotide polymer that is the primary genetic material of all cells. Eukaryotic and prokaryotic organisms normally contain DNA in a double-stranded state, yet several important biological processes transiently involve single-stranded regions. DNA, which consists of a polysugar-phosphate backbone possessing projections of purines (adenine and guanine) and pyrimidines (thymine and cytosine), forms a double helix that is held together by hydrogen bonds between these purines and pyrimidines (adenine to thymine and guanine to cytosine). DNA, Double-Stranded,Deoxyribonucleic Acid,ds-DNA,DNA, Double Stranded,Double-Stranded DNA,ds DNA
D004795 Enzyme Stability The extent to which an enzyme retains its structural conformation or its activity when subjected to storage, isolation, and purification or various other physical or chemical manipulations, including proteolytic enzymes and heat. Enzyme Stabilities,Stabilities, Enzyme,Stability, Enzyme
D004860 Infectious Anemia Virus, Equine A species of LENTIVIRUS, subgenus equine lentiviruses (LENTIVIRUSES, EQUINE), causing acute and chronic infection in horses. It is transmitted mechanically by biting flies, mosquitoes, and midges, and iatrogenically through unsterilized equipment. Chronic infection often consists of acute episodes with remissions. Equine infectious anemia virus,Swamp Fever Virus,EIAV,Swamp Fever Viruses
D001665 Binding Sites The parts of a macromolecule that directly participate in its specific combination with another molecule. Combining Site,Binding Site,Combining Sites,Site, Binding,Site, Combining,Sites, Binding,Sites, Combining
D012194 RNA-Directed DNA Polymerase An enzyme that synthesizes DNA on an RNA template. It is encoded by the pol gene of retroviruses and by certain retrovirus-like elements. EC 2.7.7.49. DNA Polymerase, RNA-Directed,RNA-Dependent DNA Polymerase,Reverse Transcriptase,RNA Transcriptase,Revertase,DNA Polymerase, RNA Directed,DNA Polymerase, RNA-Dependent,RNA Dependent DNA Polymerase,RNA Directed DNA Polymerase
D012313 RNA A polynucleotide consisting essentially of chains with a repeating backbone of phosphate and ribose units to which nitrogenous bases are attached. RNA is unique among biological macromolecules in that it can encode genetic information, serve as an abundant structural component of cells, and also possesses catalytic activity. (Rieger et al., Glossary of Genetics: Classical and Molecular, 5th ed) RNA, Non-Polyadenylated,Ribonucleic Acid,Gene Products, RNA,Non-Polyadenylated RNA,Acid, Ribonucleic,Non Polyadenylated RNA,RNA Gene Products,RNA, Non Polyadenylated

Related Publications

M Souquet, and T Restle, and R Krebs, and S F Le Grice, and R S Goody, and B M Wöhrl
October 1993, Biochemistry,
M Souquet, and T Restle, and R Krebs, and S F Le Grice, and R S Goody, and B M Wöhrl
January 1994, The Journal of biological chemistry,
M Souquet, and T Restle, and R Krebs, and S F Le Grice, and R S Goody, and B M Wöhrl
March 1986, Science (New York, N.Y.),
M Souquet, and T Restle, and R Krebs, and S F Le Grice, and R S Goody, and B M Wöhrl
June 1993, Journal of chromatography,
M Souquet, and T Restle, and R Krebs, and S F Le Grice, and R S Goody, and B M Wöhrl
February 1990, Nucleic acids research,
M Souquet, and T Restle, and R Krebs, and S F Le Grice, and R S Goody, and B M Wöhrl
January 1991, Biochemical and biophysical research communications,
M Souquet, and T Restle, and R Krebs, and S F Le Grice, and R S Goody, and B M Wöhrl
September 2004, The international journal of biochemistry & cell biology,
M Souquet, and T Restle, and R Krebs, and S F Le Grice, and R S Goody, and B M Wöhrl
December 2023, The protein journal,
M Souquet, and T Restle, and R Krebs, and S F Le Grice, and R S Goody, and B M Wöhrl
December 1991, The Journal of biological chemistry,
Copied contents to your clipboard!