Multileaf collimator leaf sequencing algorithm for intensity modulated beams with multiple static segments. 1998

P Xia, and L J Verhey
Department of Radiation Oncology, University of California at San Francisco 94143, USA. xia@radonc17.ucsf.edu

The "stop and shoot" method of producing intensity modulation using combinations of static multileaf collimator (MLC) segments has a number of advantages including precise dose delivery, easy verification, and general availability. However, due to the potential limitation of prolonged treatment time, it is essential to keep the number of required segments to a reasonable number. We propose an algorithm to minimize the number of segments for an intensity modulated field. In this algorithm, the sequence of delivery intensity is proposed to be a series of powers of 2, depending on the maximum intensity level in the matrix. The MLC leaf position sequence is designed directly on the two-dimensional intensity matrix to irradiate the largest possible area in each segment. The algorithm can be applied directly to MLC systems with different motion constraints. This algorithm has been evaluated by generating 1000 random 15 x 15 cm intensity matrices, each having from 3 to 16 intensity levels. Five clinical intensity modulated fields generated from the NOMOS CORVUS planning system for a complex clinical head and neck case were also tested with this and two other algorithms. The results of both the statistical and clinical studies showed that for all the intensity matrices tested, the proposed algorithm results in the smallest number of segments with a moderately increased monitor units. Thus it is well-suited for use in static MLC intensity modulation beam delivery. For MLC systems with interleaf motion constraint, we prove mathematically that this constraint reduces the tongue and groove effect at the expense of an increase of 25% in the number of segments.

UI MeSH Term Description Entries
D008962 Models, Theoretical Theoretical representations that simulate the behavior or activity of systems, processes, or phenomena. They include the use of mathematical equations, computers, and other electronic equipment. Experimental Model,Experimental Models,Mathematical Model,Model, Experimental,Models (Theoretical),Models, Experimental,Models, Theoretic,Theoretical Study,Mathematical Models,Model (Theoretical),Model, Mathematical,Model, Theoretical,Models, Mathematical,Studies, Theoretical,Study, Theoretical,Theoretical Model,Theoretical Models,Theoretical Studies
D009369 Neoplasms New abnormal growth of tissue. Malignant neoplasms show a greater degree of anaplasia and have the properties of invasion and metastasis, compared to benign neoplasms. Benign Neoplasm,Cancer,Malignant Neoplasm,Tumor,Tumors,Benign Neoplasms,Malignancy,Malignant Neoplasms,Neoplasia,Neoplasm,Neoplasms, Benign,Cancers,Malignancies,Neoplasias,Neoplasm, Benign,Neoplasm, Malignant,Neoplasms, Malignant
D011878 Radiotherapy The use of IONIZING RADIATION to treat malignant NEOPLASMS and some benign conditions. Radiotherapy, Targeted,Targeted Radiotherapy,Radiation Therapy,Radiation Therapy, Targeted,Radiation Treatment,Targeted Radiation Therapy,Radiation Therapies,Radiation Therapies, Targeted,Radiation Treatments,Radiotherapies,Radiotherapies, Targeted,Targeted Radiation Therapies,Targeted Radiotherapies,Therapies, Radiation,Therapies, Targeted Radiation,Therapy, Radiation,Therapy, Targeted Radiation,Treatment, Radiation
D011880 Radiotherapy Planning, Computer-Assisted Computer-assisted mathematical calculations of beam angles, intensities of radiation, and duration of irradiation in radiotherapy. Computer-Assisted Radiotherapy Planning,Dosimetry Calculations, Computer-Assisted,Planning, Computer-Assisted Radiotherapy,Calculation, Computer-Assisted Dosimetry,Calculations, Computer-Assisted Dosimetry,Computer Assisted Radiotherapy Planning,Computer-Assisted Dosimetry Calculation,Computer-Assisted Dosimetry Calculations,Dosimetry Calculation, Computer-Assisted,Dosimetry Calculations, Computer Assisted,Planning, Computer Assisted Radiotherapy,Radiotherapy Planning, Computer Assisted
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000465 Algorithms A procedure consisting of a sequence of algebraic formulas and/or logical steps to calculate or determine a given task. Algorithm
D015203 Reproducibility of Results The statistical reproducibility of measurements (often in a clinical context), including the testing of instrumentation or techniques to obtain reproducible results. The concept includes reproducibility of physiological measurements, which may be used to develop rules to assess probability or prognosis, or response to a stimulus; reproducibility of occurrence of a condition; and reproducibility of experimental results. Reliability and Validity,Reliability of Result,Reproducibility Of Result,Reproducibility of Finding,Validity of Result,Validity of Results,Face Validity,Reliability (Epidemiology),Reliability of Results,Reproducibility of Findings,Test-Retest Reliability,Validity (Epidemiology),Finding Reproducibilities,Finding Reproducibility,Of Result, Reproducibility,Of Results, Reproducibility,Reliabilities, Test-Retest,Reliability, Test-Retest,Result Reliabilities,Result Reliability,Result Validities,Result Validity,Result, Reproducibility Of,Results, Reproducibility Of,Test Retest Reliability,Validity and Reliability,Validity, Face

Related Publications

P Xia, and L J Verhey
January 1998, Cancer radiotherapie : journal de la Societe francaise de radiotherapie oncologique,
P Xia, and L J Verhey
February 2004, Physics in medicine and biology,
P Xia, and L J Verhey
July 1997, International journal of radiation oncology, biology, physics,
P Xia, and L J Verhey
January 2011, Nihon Hoshasen Gijutsu Gakkai zasshi,
P Xia, and L J Verhey
November 2001, Medical physics,
Copied contents to your clipboard!