Inhibition of insulin release by enterostatin. 1998

M Ookuma, and D A York
Pennington Biomedical Research Center, Louisiana State University, Baton Rouge 70808-4124, USA.

OBJECTIVE These studies were designed to investigate the mechanism through which enterostatin inhibits insulin secretion from pancreatic islets. METHODS A static islet incubation method was used to study the effects of enterostatin on insulin secretion induced by various secretagogues and to investigate the effect of calcium ions and 8-Br-cyclic AMP on the response to enterostatin. Measurements of islet cAMP concentrations in response to enterostatin were also made. RESULTS Enterostatin (10(-9) to 10(-5) M) inhibited insulin secretion from islets incubated in the presence of 16.7 mM glucose in a dose-dependent manner. Enterostatin also inhibited insulin secretion stimulated by glybenclamide (5.0 and 10 microM), phorbol 12-myristate-13-acetate (TPA) (50 and 100 nM), and the kappa-opioid agonist U50,488 (100 nM). The inhibitory effect of enterostatin on TPA-induced insulin secretion was attenuated but still remained in the absence of extracellular Ca2+. The enterostatin inhibition of insulin secretion was blocked by 8-Br-cAMP (1 mM) independent of extracellular Ca2+. Enterostatin reduced the increase in intracellular cyclic AMP (cAMP) content produced by U50,488 (100 nM) and the changes in cAMP content were parallel with changes in insulin release. CONCLUSIONS Enterostatin may suppress insulin secretion through the reduction of cAMP, but other mechanisms may also be possible.

UI MeSH Term Description Entries
D007004 Hypoglycemic Agents Substances which lower blood glucose levels. Antidiabetic,Antidiabetic Agent,Antidiabetic Drug,Antidiabetics,Antihyperglycemic,Antihyperglycemic Agent,Hypoglycemic,Hypoglycemic Agent,Hypoglycemic Drug,Antidiabetic Agents,Antidiabetic Drugs,Antihyperglycemic Agents,Antihyperglycemics,Hypoglycemic Drugs,Hypoglycemic Effect,Hypoglycemic Effects,Hypoglycemics,Agent, Antidiabetic,Agent, Antihyperglycemic,Agent, Hypoglycemic,Agents, Antidiabetic,Agents, Antihyperglycemic,Agents, Hypoglycemic,Drug, Antidiabetic,Drug, Hypoglycemic,Drugs, Antidiabetic,Drugs, Hypoglycemic,Effect, Hypoglycemic,Effects, Hypoglycemic
D007328 Insulin A 51-amino acid pancreatic hormone that plays a major role in the regulation of glucose metabolism, directly by suppressing endogenous glucose production (GLYCOGENOLYSIS; GLUCONEOGENESIS) and indirectly by suppressing GLUCAGON secretion and LIPOLYSIS. Native insulin is a globular protein comprised of a zinc-coordinated hexamer. Each insulin monomer containing two chains, A (21 residues) and B (30 residues), linked by two disulfide bonds. Insulin is used as a drug to control insulin-dependent diabetes mellitus (DIABETES MELLITUS, TYPE 1). Iletin,Insulin A Chain,Insulin B Chain,Insulin, Regular,Novolin,Sodium Insulin,Soluble Insulin,Chain, Insulin B,Insulin, Sodium,Insulin, Soluble,Regular Insulin
D007515 Islets of Langerhans Irregular microscopic structures consisting of cords of endocrine cells that are scattered throughout the PANCREAS among the exocrine acini. Each islet is surrounded by connective tissue fibers and penetrated by a network of capillaries. There are four major cell types. The most abundant beta cells (50-80%) secrete INSULIN. Alpha cells (5-20%) secrete GLUCAGON. PP cells (10-35%) secrete PANCREATIC POLYPEPTIDE. Delta cells (~5%) secrete SOMATOSTATIN. Islands of Langerhans,Islet Cells,Nesidioblasts,Pancreas, Endocrine,Pancreatic Islets,Cell, Islet,Cells, Islet,Endocrine Pancreas,Islet Cell,Islet, Pancreatic,Islets, Pancreatic,Langerhans Islands,Langerhans Islets,Nesidioblast,Pancreatic Islet
D008297 Male Males
D011498 Protein Precursors Precursors, Protein
D002118 Calcium A basic element found in nearly all tissues. It is a member of the alkaline earth family of metals with the atomic symbol Ca, atomic number 20, and atomic weight 40. Calcium is the most abundant mineral in the body and combines with phosphorus to form calcium phosphate in the bones and teeth. It is essential for the normal functioning of nerves and muscles and plays a role in blood coagulation (as factor IV) and in many enzymatic processes. Coagulation Factor IV,Factor IV,Blood Coagulation Factor IV,Calcium-40,Calcium 40,Factor IV, Coagulation
D003089 Colipases Colipase I and II, consisting of 94-95 and 84-85 amino acid residues, respectively, have been isolated from porcine pancreas. Their role is to prevent the inhibitory effect of bile salts on the lipase-catalyzed intraduodenal hydrolysis of dietary long-chain triglycerides. Colipase A,Colipase B
D004305 Dose-Response Relationship, Drug The relationship between the dose of an administered drug and the response of the organism to the drug. Dose Response Relationship, Drug,Dose-Response Relationships, Drug,Drug Dose-Response Relationship,Drug Dose-Response Relationships,Relationship, Drug Dose-Response,Relationships, Drug Dose-Response
D004792 Enzyme Precursors Physiologically inactive substances that can be converted to active enzymes. Enzyme Precursor,Proenzyme,Proenzymes,Zymogen,Zymogens,Precursor, Enzyme,Precursors, Enzyme
D005905 Glyburide An antidiabetic sulfonylurea derivative with actions like those of chlorpropamide Glibenclamide,Daonil,Diabeta,Euglucon 5,Euglucon N,Glybenclamide,HB-419,HB-420,Maninil,Micronase,Neogluconin,HB 419,HB 420,HB419,HB420

Related Publications

M Ookuma, and D A York
January 1992, Brazilian journal of medical and biological research = Revista brasileira de pesquisas medicas e biologicas,
M Ookuma, and D A York
March 1970, Hormone and metabolic research = Hormon- und Stoffwechselforschung = Hormones et metabolisme,
M Ookuma, and D A York
May 1966, Science (New York, N.Y.),
M Ookuma, and D A York
June 1985, Endocrinology,
M Ookuma, and D A York
February 1965, Klinische Wochenschrift,
M Ookuma, and D A York
September 1980, Molecular pharmacology,
M Ookuma, and D A York
January 1975, Naunyn-Schmiedeberg's archives of pharmacology,
M Ookuma, and D A York
September 1981, Hormone and metabolic research = Hormon- und Stoffwechselforschung = Hormones et metabolisme,
M Ookuma, and D A York
July 1982, The American journal of physiology,
Copied contents to your clipboard!