A characteristic feature of glaciated Precambrian environments is their low selenium content, as a chalcophile element, Se, replaces sulfur in many of the sulfide minerals, for example, pyrite, chalcopyrite, pyrrhotite, and pentlandite. The average Se concentration in rocks and related till deposits in Finland is in the range of 0.01 to 0.2 mg/kg. Due to geological conditions, Se concentrations in surface and ground water are low in Finland compared with other countries. In a nationwide study dealing with the hydrogeochemistry of headwater streams, the median Se concentration in streams during August to September 1990 was 30 to 180 microg/L. For comparison, Se concentrations in shallow well waters are generally in the range of 50 to 1000 microg/L. The Se concentrations in stream sediments varied from 0.03 to 3.94 mg/kg. There was a highly significant correlation between the Se concentrations in stream water and in stream sediment. The streams with Se concentrations exceeding the general level in both water and sediment were most common in southern Finland. A speciation study on Finnish stream waters revealed that there were equal proportions of Se complexed with humic substances (36%) and Se as a selenate species (36%), whereas selenite accounted for less than 10% of total Se. About 8% of the Se in stream water occurred in particulate form. In an effort to enhance the Se intake of Finns through diet, Se-supplemented fertilizers have been used nationwide since 1985. While greatly improving Se levels in the population, the measure has raised concerns about undesirable environmental effects. Therefore, the amount of Se added to fertilizers has been reduced since 1991. Differing in behavior from Se, arsenic is considered one of the most toxic metals derived from the natural environment. Alarm has been triggered in Finland by the recent lowering from 50 microg/L to 10 microg/L of the upper level of As permissible in potable water, the recent information of high As concentrations in water from drilled bedrock wells, and the findings of international medical studies suggesting that As is a carcinogen. The most important source of As is arsenopyrite (FeAsS). Hence, high As concentrations most frequently occur in areas of sulfide mineralization, often in connection with occurrences of mafic rocks such as gabbros, amphibolites, and peridotites. The As concentrations in till fines, the most common glaciogenic soil type in Finland, reflect those in bedrock. The concentrations in groundwater are controlled by the chemical composition of the bedrock and the soil and prevailing hydrogeochemical conditions, for example, pH and Eh levels. Arsenic concentrations are lowest in surface water and swiftly flowing shallow ground water discharged by springs and are somewhat higher in shallow wells dug into overburden. By far, the highest As concentrations are to be found in wells drilled into bedrock (maximum 1 to 2 mg/L), although the concentrations vary by several orders of magnitude from well to well. The highest probability of encountering deleteriously arsenious well water is in areas with characteristic As anomalies in the till and bedrock. Hence, it is important to understand local geological conditions, particularly in the case of wells drilled into bedrock. The risk of deleteriously high As concentrations occurring in captured springs and shallow wells is slight.