Post-transcriptional regulation of endothelial nitric oxide synthase mRNA stability by Rho GTPase. 1998

U Laufs, and J K Liao
Cardiovascular Division, Brigham & Women's Hospital and Harvard Medical School, Boston, Massachusetts 02115, USA.

The mechanism by which 3-hydroxy-3-methylglutaryl (HMG)-CoA reductase inhibitors increase endothelial nitric oxide synthase (eNOS) expression is unknown. To determine whether changes in isoprenoid synthesis affects eNOS expression, human endothelial cells were treated with the HMG-CoA reductase inhibitor, mevastatin (1-10 microM), in the presence of L-mevalonate (200 microM), geranylgeranylpyrophosphate (GGPP, 1-10 microM), farnesylpyrophosphate (FPP, 5-10 microM), or low density lipoprotein (LDL, 1 mg/ml). Mevastatin increased eNOS mRNA and protein levels by 305 +/- 15% and 180 +/- 11%, respectively. Co-treatment with L-mevalonate or GGPP, but not FPP or LDL, reversed mevastatin's effects. Because Rho GTPases undergo geranylgeranyl modification, we investigated whether Rho regulates eNOS expression. Immunoblot analyses and [35S]GTPgammaS-binding assays revealed that mevastatin inhibited Rho membrane translocation and GTP binding activity by 60 +/- 5% and 78 +/- 6%, both of which were reversed by co-treatment with GGPP but not FPP. Furthermore, inhibition of Rho by Clostridium botulinum C3 transferase (50 microg/ml) or by overexpression of a dominant-negative N19RhoA mutant increased eNOS expression. In contrast, activation of Rho by Escherichia coli cytotoxic necrotizing factor-1 (200 ng/ml) decreased eNOS expression. These findings indicate that Rho negatively regulates eNOS expression and that HMG-CoA reductase inhibitors up-regulate eNOS expression by blocking Rho geranylgeranylation, which is necessary for its membrane-associated activity.

UI MeSH Term Description Entries
D007700 Kinetics The rate dynamics in chemical or physical systems.
D008077 Lipoproteins, LDL A class of lipoproteins of small size (18-25 nm) and light (1.019-1.063 g/ml) particles with a core composed mainly of CHOLESTEROL ESTERS and smaller amounts of TRIGLYCERIDES. The surface monolayer consists mostly of PHOSPHOLIPIDS, a single copy of APOLIPOPROTEIN B-100, and free cholesterol molecules. The main LDL function is to transport cholesterol and cholesterol esters to extrahepatic tissues. Low-Density Lipoprotein,Low-Density Lipoproteins,beta-Lipoprotein,beta-Lipoproteins,LDL(1),LDL(2),LDL-1,LDL-2,LDL1,LDL2,Low-Density Lipoprotein 1,Low-Density Lipoprotein 2,LDL Lipoproteins,Lipoprotein, Low-Density,Lipoproteins, Low-Density,Low Density Lipoprotein,Low Density Lipoprotein 1,Low Density Lipoprotein 2,Low Density Lipoproteins,beta Lipoprotein,beta Lipoproteins
D008148 Lovastatin A fungal metabolite isolated from cultures of Aspergillus terreus. The compound is a potent anticholesteremic agent. It inhibits 3-hydroxy-3-methylglutaryl coenzyme A reductase (HYDROXYMETHYLGLUTARYL COA REDUCTASES), which is the rate-limiting enzyme in cholesterol biosynthesis. It also stimulates the production of low-density lipoprotein receptors in the liver. Lovastatin, 1 alpha-Isomer,Mevinolin,6-Methylcompactin,Lovastatin, (1 alpha(S*))-Isomer,MK-803,Mevacor,Monacolin K,1 alpha-Isomer Lovastatin,6 Methylcompactin,Lovastatin, 1 alpha Isomer,MK 803,MK803,alpha-Isomer Lovastatin, 1
D008565 Membrane Proteins Proteins which are found in membranes including cellular and intracellular membranes. They consist of two types, peripheral and integral proteins. They include most membrane-associated enzymes, antigenic proteins, transport proteins, and drug, hormone, and lectin receptors. Cell Membrane Protein,Cell Membrane Proteins,Cell Surface Protein,Cell Surface Proteins,Integral Membrane Proteins,Membrane-Associated Protein,Surface Protein,Surface Proteins,Integral Membrane Protein,Membrane Protein,Membrane-Associated Proteins,Membrane Associated Protein,Membrane Associated Proteins,Membrane Protein, Cell,Membrane Protein, Integral,Membrane Proteins, Integral,Protein, Cell Membrane,Protein, Cell Surface,Protein, Integral Membrane,Protein, Membrane,Protein, Membrane-Associated,Protein, Surface,Proteins, Cell Membrane,Proteins, Cell Surface,Proteins, Integral Membrane,Proteins, Membrane,Proteins, Membrane-Associated,Proteins, Surface,Surface Protein, Cell
D008798 Mevalonic Acid A dihydroxy monocarboxylic acid and precursor in the biosynthetic pathway known as the mevalonate pathway, which produces terpenes and steroids that are vital for diverse cellular functions. Mevalonate,Acid, Mevalonic
D011106 Polyisoprenyl Phosphates Phosphoric or pyrophosphoric acid esters of polyisoprenoids. Isoprenoid Phosphates,Terpene Phosphates,Phosphates, Isoprenoid,Phosphates, Polyisoprenyl,Phosphates, Terpene
D001905 Botulinum Toxins Toxic proteins produced from the species CLOSTRIDIUM BOTULINUM. The toxins are synthesized as a single peptide chain which is processed into a mature protein consisting of a heavy chain and light chain joined via a disulfide bond. The botulinum toxin light chain is a zinc-dependent protease which is released from the heavy chain upon ENDOCYTOSIS into PRESYNAPTIC NERVE ENDINGS. Once inside the cell the botulinum toxin light chain cleaves specific SNARE proteins which are essential for secretion of ACETYLCHOLINE by SYNAPTIC VESICLES. This inhibition of acetylcholine release results in muscular PARALYSIS. Botulin,Botulinum Neurotoxin,Botulinum Neurotoxins,Clostridium botulinum Toxins,Botulinum Toxin,Neurotoxin, Botulinum,Neurotoxins, Botulinum,Toxin, Botulinum,Toxins, Botulinum,Toxins, Clostridium botulinum
D002478 Cells, Cultured Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others. Cultured Cells,Cell, Cultured,Cultured Cell
D003600 Cytosol Intracellular fluid from the cytoplasm after removal of ORGANELLES and other insoluble cytoplasmic components. Cytosols
D003603 Cytotoxins Substances that are toxic to cells; they may be involved in immunity or may be contained in venoms. These are distinguished from CYTOSTATIC AGENTS in degree of effect. Some of them are used as CYTOTOXIC ANTIBIOTICS. The mechanism of action of many of these are as ALKYLATING AGENTS or MITOSIS MODULATORS. Cytolysins,Cytotoxic Agent,Cytotoxic Agents,Cytotoxin,Agent, Cytotoxic

Related Publications

U Laufs, and J K Liao
June 1998, The Journal of biological chemistry,
U Laufs, and J K Liao
October 2015, Arteriosclerosis, thrombosis, and vascular biology,
U Laufs, and J K Liao
December 2002, International immunopharmacology,
U Laufs, and J K Liao
November 2006, American journal of physiology. Cell physiology,
U Laufs, and J K Liao
December 1995, The American journal of physiology,
U Laufs, and J K Liao
March 2007, Hypertension (Dallas, Tex. : 1979),
U Laufs, and J K Liao
December 2013, Frontiers in physiology,
Copied contents to your clipboard!