Force feedback control of motor unit recruitment in isometric muscle. 1998

R V Baratta, and B H Zhou, and M Solomonow, and R D D'Ambrosia
Department of Orthopaedic Surgery, Louisiana State University Medical Center, New Orleans, USA.

The use of simple force feedback in an isometric muscle control system utilizing orderly recruitment of motor units is explored. Cat medial gastrocnemius motor units were stimulated with and without simple force feedback gain ranging from 0.7 to 0.9. Ramp, triangular, staircase, sinusoidal and bandwidth-limited pseudo-random input recruitment signals were used to study tracking accuracy through linear correlation in ramp and triangular signals, cross correlation in sinusoidal and random signals, and rise time and steady state error in staircase signals. Dramatic improvements were found in most tested tracking variables with the use of feedback; squared correlation coefficients increased from a mean of 0.93 to 0.99 for ramp signals and from 0.76 to 0.98 in triangular signals. Mean peak cross-correlations improved from 0.85 to 0.98 in random signals and from 0.93 to 0.98 for sinusoidal inputs, and mean time to peak cross-correlations decreased from 144 to 24 ms in random signals and from 156 to 25 ms in sine waves. Rise times in staircase signals decreased from a mean of 520 to 175 ms, and mean steady state error decreased from 12 to 3%. Significant effects of the triangle cycle time, sinusoidal frequency and staircase step were found on the performance of the muscle force control system. In addition, the possible effects of intrinsic feedback mechanisms on the control system were examined by repeating the closed loop part of the study but with the sciatic nerve cut proximally. The tracking results were essentially and statistically the same as in the closed loop condition. It was concluded that a simple feedback configuration provided superior tracking performance for a practical application in which orderly recruitment is used to control muscles; furthermore, it was concluded that this type of system would be virtually immune to external disturbances such as spasticity resulting from intact spinal neural feedback mechanisms found in paralyzed individuals.

UI MeSH Term Description Entries
D007537 Isometric Contraction Muscular contractions characterized by increase in tension without change in length. Contraction, Isometric,Contractions, Isometric,Isometric Contractions
D009046 Motor Neurons Neurons which activate MUSCLE CELLS. Neurons, Motor,Alpha Motorneurons,Motoneurons,Motor Neurons, Alpha,Neurons, Alpha Motor,Alpha Motor Neuron,Alpha Motor Neurons,Alpha Motorneuron,Motoneuron,Motor Neuron,Motor Neuron, Alpha,Motorneuron, Alpha,Motorneurons, Alpha,Neuron, Alpha Motor,Neuron, Motor
D009128 Muscle Spasticity A form of muscle hypertonia associated with upper MOTOR NEURON DISEASE. Resistance to passive stretch of a spastic muscle results in minimal initial resistance (a "free interval") followed by an incremental increase in muscle tone. Tone increases in proportion to the velocity of stretch. Spasticity is usually accompanied by HYPERREFLEXIA and variable degrees of MUSCLE WEAKNESS. (From Adams et al., Principles of Neurology, 6th ed, p54) Clasp-Knife Spasticity,Spastic,Clasp Knife Spasticity,Spasticity, Clasp-Knife,Spasticity, Muscle
D009434 Neural Pathways Neural tracts connecting one part of the nervous system with another. Neural Interconnections,Interconnection, Neural,Interconnections, Neural,Neural Interconnection,Neural Pathway,Pathway, Neural,Pathways, Neural
D010243 Paralysis A general term most often used to describe severe or complete loss of muscle strength due to motor system disease from the level of the cerebral cortex to the muscle fiber. This term may also occasionally refer to a loss of sensory function. (From Adams et al., Principles of Neurology, 6th ed, p45) Palsy,Plegia,Todd Paralysis,Todd's Paralysis,Palsies,Paralyses,Paralysis, Todd,Paralysis, Todd's,Plegias,Todds Paralysis
D011999 Recruitment, Neurophysiological The spread of response if stimulation is prolonged. (Campbell's Psychiatric Dictionary, 8th ed.) Recruitment, Motor Unit,Motor Unit Recruitment,Neurophysiological Recruitment
D002415 Cats The domestic cat, Felis catus, of the carnivore family FELIDAE, comprising over 30 different breeds. The domestic cat is descended primarily from the wild cat of Africa and extreme southwestern Asia. Though probably present in towns in Palestine as long ago as 7000 years, actual domestication occurred in Egypt about 4000 years ago. (From Walker's Mammals of the World, 6th ed, p801) Felis catus,Felis domesticus,Domestic Cats,Felis domestica,Felis sylvestris catus,Cat,Cat, Domestic,Cats, Domestic,Domestic Cat
D004558 Electric Stimulation Use of electric potential or currents to elicit biological responses. Stimulation, Electric,Electrical Stimulation,Electric Stimulations,Electrical Stimulations,Stimulation, Electrical,Stimulations, Electric,Stimulations, Electrical
D005246 Feedback A mechanism of communication within a system in that the input signal generates an output response which returns to influence the continued activity or productivity of that system. Feedbacks
D006614 Hindlimb Either of two extremities of four-footed non-primate land animals. It usually consists of a FEMUR; TIBIA; and FIBULA; tarsals; METATARSALS; and TOES. (From Storer et al., General Zoology, 6th ed, p73) Hindlimbs

Related Publications

R V Baratta, and B H Zhou, and M Solomonow, and R D D'Ambrosia
September 1996, Journal of neurophysiology,
R V Baratta, and B H Zhou, and M Solomonow, and R D D'Ambrosia
December 1993, Physical therapy,
R V Baratta, and B H Zhou, and M Solomonow, and R D D'Ambrosia
July 1977, Biological cybernetics,
R V Baratta, and B H Zhou, and M Solomonow, and R D D'Ambrosia
January 1993, European journal of applied physiology and occupational physiology,
R V Baratta, and B H Zhou, and M Solomonow, and R D D'Ambrosia
October 2003, Journal of electromyography and kinesiology : official journal of the International Society of Electrophysiological Kinesiology,
R V Baratta, and B H Zhou, and M Solomonow, and R D D'Ambrosia
January 2004, Motor control,
R V Baratta, and B H Zhou, and M Solomonow, and R D D'Ambrosia
March 2001, Experimental brain research,
R V Baratta, and B H Zhou, and M Solomonow, and R D D'Ambrosia
January 1999, Neuroscience,
R V Baratta, and B H Zhou, and M Solomonow, and R D D'Ambrosia
October 2015, Motor control,
R V Baratta, and B H Zhou, and M Solomonow, and R D D'Ambrosia
November 1993, Journal of neurophysiology,
Copied contents to your clipboard!