Motor neuron-derived retinoid signaling specifies the subtype identity of spinal motor neurons. 1998

S Sockanathan, and T M Jessell
Howard Hughes Medical Institute, Department of Biochemistry and Molecular Biophysics, Columbia University, New York, New York 10032, USA.

The diversification of neuronal cell types in the vertebrate central nervous system depends on inductive signals provided by local organizing cell groups of both neural and nonneural origin. The influence of signals provided by postmitotic neurons on the fate of neurons born at subsequent development stages, however, remains unclear. We provide evidence that a retinoid-mediated signal provided by one subset of early-born spinal motor neurons imposes a local variation in the number of motor neurons generated at different axial levels and also specifies the identity of a later-born subset of motor neurons. Thus, in the vertebrate central nervous system the distinct fates of late-born neurons may be acquired in response to signals provided by early-born neurons.

UI MeSH Term Description Entries
D008959 Models, Neurological Theoretical representations that simulate the behavior or activity of the neurological system, processes or phenomena; includes the use of mathematical equations, computers, and other electronic equipment. Neurologic Models,Model, Neurological,Neurologic Model,Neurological Model,Neurological Models,Model, Neurologic,Models, Neurologic
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D009046 Motor Neurons Neurons which activate MUSCLE CELLS. Neurons, Motor,Alpha Motorneurons,Motoneurons,Motor Neurons, Alpha,Neurons, Alpha Motor,Alpha Motor Neuron,Alpha Motor Neurons,Alpha Motorneuron,Motoneuron,Motor Neuron,Motor Neuron, Alpha,Motorneuron, Alpha,Motorneurons, Alpha,Neuron, Alpha Motor,Neuron, Motor
D002454 Cell Differentiation Progressive restriction of the developmental potential and increasing specialization of function that leads to the formation of specialized cells, tissues, and organs. Differentiation, Cell,Cell Differentiations,Differentiations, Cell
D002642 Chick Embryo The developmental entity of a fertilized chicken egg (ZYGOTE). The developmental process begins about 24 h before the egg is laid at the BLASTODISC, a small whitish spot on the surface of the EGG YOLK. After 21 days of incubation, the embryo is fully developed before hatching. Embryo, Chick,Chick Embryos,Embryos, Chick
D004627 Embryonic Induction The complex processes of initiating CELL DIFFERENTIATION in the embryo. The precise regulation by cell interactions leads to diversity of cell types and specific pattern of organization (EMBRYOGENESIS). Embryonic Inductions,Induction, Embryonic,Inductions, Embryonic
D005552 Forelimb A front limb of a quadruped. (The Random House College Dictionary, 1980) Forelimbs
D000445 Aldehyde Oxidoreductases Oxidoreductases that are specific for ALDEHYDES. Aldehyde Oxidoreductase,Oxidoreductase, Aldehyde,Oxidoreductases, Aldehyde
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D012176 Retinoids A group of tetraterpenes, with four terpene units joined head-to-tail. Biologically active members of this class are used clinically in the treatment of severe cystic ACNE; PSORIASIS; and other disorders of keratinization. Retinoid

Related Publications

S Sockanathan, and T M Jessell
February 2014, Development (Cambridge, England),
S Sockanathan, and T M Jessell
October 2013, The Journal of biological chemistry,
S Sockanathan, and T M Jessell
January 2014, Frontiers in cellular neuroscience,
S Sockanathan, and T M Jessell
February 2004, Development (Cambridge, England),
S Sockanathan, and T M Jessell
March 2013, Current biology : CB,
S Sockanathan, and T M Jessell
January 2000, Trends in genetics : TIG,
Copied contents to your clipboard!