Effects of long-term infection with bovine immunodeficiency virus and/or bovine leukemia virus on antibody and lymphocyte proliferative responses in cattle. 1998

J A Isaacson, and K P Flaming, and J A Roth
Department of Microbiology, Immunology, and Preventive Medicine, College of Veterinary Medicine, Iowa State University, Ames 50011, USA.

Immune responses were examined in cattle between 3-5 years after experimental inoculation with bovine immunodeficiency virus (BIG) and/or bovine leukemia virus (BLV). Lymphocyte proliferative responses to Con A or to allogeneic lymphocytes with foreign major histocompatibility complex molecules (allo MHC) were determined by 3H-thymidine incorporation assays. Antigen-specific antibody and lymphocyte proliferative responses were measured following vaccination with tetanus toxoid (TT) and bovine herpes virus-1 (BHV-1). Lymphocytes from BIV-infected cattle had significantly (p<0.05) reduced proliferative responses to Con A, but responses to allo-MHC and TT did not differ from those of uninfected controls. BIV infection also had little effect on TT-specific antibody responses in vivo. In contrast, BLV-infected cattle had significantly increased secondary antibody responses to vaccination with TT, as well as enhancement of antibody responses to BHV-1. Co-infection with BIV did not alter the BLV effect, suggesting a lack of significant interaction between the two viruses in vivo. Numbers of circulating mononuclear cells were also higher in BLV-infected cattle, which was attributable to increases in both T and B cell numbers. Unstimulated lymphocytes from BLV-infected cattle had significantly increased spontaneous uptake of 3H-thymidine in vitro. When differences in counts per minute were analyzed, lymphocytes from BLV-infected cattle had slightly increased proliferative responses to Con A, but no consistent alternations in responsiveness to allo-MHC, TT, or BHV-1. The observed increase in antibody responses to non-BLV antigens suggests that at least in clinically asymptomatic cattle, BLV infection may cause a non-specific B cell activation.

UI MeSH Term Description Entries
D007111 Immunity, Cellular Manifestations of the immune response which are mediated by antigen-sensitized T-lymphocytes via lymphokines or direct cytotoxicity. This takes place in the absence of circulating antibody or where antibody plays a subordinate role. Cell-Mediated Immunity,Cellular Immune Response,Cell Mediated Immunity,Cell-Mediated Immunities,Cellular Immune Responses,Cellular Immunities,Cellular Immunity,Immune Response, Cellular,Immune Responses, Cellular,Immunities, Cell-Mediated,Immunities, Cellular,Immunity, Cell-Mediated,Response, Cellular Immune
D007242 Herpesvirus 1, Bovine A species of VARICELLOVIRUS that causes INFECTIOUS BOVINE RHINOTRACHEITIS and other associated syndromes in CATTLE. IBR-IPV Virus,Infectious Bovine Rhinotracheitis Virus,Infectious Pustular Vulvovaginitis Virus,Bovine Herpesvirus 1,Bovine Rhinotracheitis Virus, Infectious,Herpesvirus 1 (alpha), Bovine,Pustular Vulvovaginitis Virus, Infectious,IBR IPV Virus,IBR-IPV Viruses,Virus, IBR-IPV,Viruses, IBR-IPV
D007959 Lymphocyte Culture Test, Mixed Measure of histocompatibility at the HL-A locus. Peripheral blood lymphocytes from two individuals are mixed together in tissue culture for several days. Lymphocytes from incompatible individuals will stimulate each other to proliferate significantly (measured by tritiated thymidine uptake) whereas those from compatible individuals will not. In the one-way MLC test, the lymphocytes from one of the individuals are inactivated (usually by treatment with MITOMYCIN or radiation) thereby allowing only the untreated remaining population of cells to proliferate in response to foreign histocompatibility antigens. Leukocyte Culture Test, Mixed,Mixed Lymphocyte Culture Test,Mixed Lymphocyte Reaction,Mixed Leukocyte Culture Test,Mixed Leukocyte Reaction,Leukocyte Reaction, Mixed,Leukocyte Reactions, Mixed,Lymphocyte Reaction, Mixed,Lymphocyte Reactions, Mixed,Mixed Leukocyte Reactions,Mixed Lymphocyte Reactions
D008213 Lymphocyte Activation Morphologic alteration of small B LYMPHOCYTES or T LYMPHOCYTES in culture into large blast-like cells able to synthesize DNA and RNA and to divide mitotically. It is induced by INTERLEUKINS; MITOGENS such as PHYTOHEMAGGLUTININS, and by specific ANTIGENS. It may also occur in vivo as in GRAFT REJECTION. Blast Transformation,Blastogenesis,Lymphoblast Transformation,Lymphocyte Stimulation,Lymphocyte Transformation,Transformation, Blast,Transformation, Lymphoblast,Transformation, Lymphocyte,Activation, Lymphocyte,Stimulation, Lymphocyte
D008297 Male Males
D001772 Blood Cell Count The number of LEUKOCYTES and ERYTHROCYTES per unit volume in a sample of venous BLOOD. A complete blood count (CBC) also includes measurement of the HEMOGLOBIN; HEMATOCRIT; and ERYTHROCYTE INDICES. Blood Cell Number,Blood Count, Complete,Blood Cell Counts,Blood Cell Numbers,Blood Counts, Complete,Complete Blood Count,Complete Blood Counts,Count, Blood Cell,Count, Complete Blood,Counts, Blood Cell,Counts, Complete Blood,Number, Blood Cell,Numbers, Blood Cell
D001909 Leukemia Virus, Bovine The type species of DELTARETROVIRUS that causes a form of bovine lymphosarcoma (ENZOOTIC BOVINE LEUKOSIS) or persistent lymphocytosis. BLV,Bovine Leukemia Virus,Cattle Leukemia Virus,Leukemia Virus, Cattle,Virus, Bovine Leukemia,Virus, Cattle Leukemia
D002417 Cattle Domesticated bovine animals of the genus Bos, usually kept on a farm or ranch and used for the production of meat or dairy products or for heavy labor. Beef Cow,Bos grunniens,Bos indicus,Bos indicus Cattle,Bos taurus,Cow,Cow, Domestic,Dairy Cow,Holstein Cow,Indicine Cattle,Taurine Cattle,Taurus Cattle,Yak,Zebu,Beef Cows,Bos indicus Cattles,Cattle, Bos indicus,Cattle, Indicine,Cattle, Taurine,Cattle, Taurus,Cattles, Bos indicus,Cattles, Indicine,Cattles, Taurine,Cattles, Taurus,Cow, Beef,Cow, Dairy,Cow, Holstein,Cows,Dairy Cows,Domestic Cow,Domestic Cows,Indicine Cattles,Taurine Cattles,Taurus Cattles,Yaks,Zebus
D002418 Cattle Diseases Diseases of domestic cattle of the genus Bos. It includes diseases of cows, yaks, and zebus. Bovine Diseases,Bovine Disease,Cattle Disease,Disease, Bovine,Disease, Cattle,Diseases, Bovine,Diseases, Cattle
D004797 Enzyme-Linked Immunosorbent Assay An immunoassay utilizing an antibody labeled with an enzyme marker such as horseradish peroxidase. While either the enzyme or the antibody is bound to an immunosorbent substrate, they both retain their biologic activity; the change in enzyme activity as a result of the enzyme-antibody-antigen reaction is proportional to the concentration of the antigen and can be measured spectrophotometrically or with the naked eye. Many variations of the method have been developed. ELISA,Assay, Enzyme-Linked Immunosorbent,Assays, Enzyme-Linked Immunosorbent,Enzyme Linked Immunosorbent Assay,Enzyme-Linked Immunosorbent Assays,Immunosorbent Assay, Enzyme-Linked,Immunosorbent Assays, Enzyme-Linked

Related Publications

J A Isaacson, and K P Flaming, and J A Roth
October 2010, Journal of infection in developing countries,
J A Isaacson, and K P Flaming, and J A Roth
February 1980, Nihon juigaku zasshi. The Japanese journal of veterinary science,
J A Isaacson, and K P Flaming, and J A Roth
July 2013, Journal of the American Veterinary Medical Association,
J A Isaacson, and K P Flaming, and J A Roth
March 2000, The Journal of veterinary medical science,
J A Isaacson, and K P Flaming, and J A Roth
March 1979, Cancer research,
J A Isaacson, and K P Flaming, and J A Roth
May 1997, Veterinary immunology and immunopathology,
J A Isaacson, and K P Flaming, and J A Roth
October 1992, Canadian journal of veterinary research = Revue canadienne de recherche veterinaire,
J A Isaacson, and K P Flaming, and J A Roth
March 1995, The Veterinary record,
J A Isaacson, and K P Flaming, and J A Roth
October 1997, The Journal of infectious diseases,
J A Isaacson, and K P Flaming, and J A Roth
January 2002, Veterinary microbiology,
Copied contents to your clipboard!