Mutation rate of a microsatellite sequence in normal human fibroblasts. 1998

J C Boyer, and R A Farber
Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, 27599, USA.

Dinucleotide repeats, because of their repetitive nature, are prone to frameshift mutations, most likely via a DNA-polymerase slippage mechanism. Mutation rates in microsatellite DNA sequences are high in mismatch repair-defective cells. In normal cells, only estimates of maximal rates of mutation in microsatellites have been possible previously, because of the low sensitivity of screening assays for mutations in endogenous sequences. We have measured the spontaneous mutation rate of a dinucleotide repeat in diploid human foreskin fibroblasts. In our system, the mutation target is a (CA)17 repeat contained within a stably integrated plasmid. The repeat disrupts the reading frame of a neomycin (neo) resistance gene within the plasmid. Cells containing frameshift mutations in the CA repeat that correct the reading frame of the neo gene are selected using the neo analogue G418. This system of measuring microsatellite mutation rates is highly sensitive, because there is a specific target within which mutations can be selected. Fluctuation analysis of cells containing the target DNA yielded mutation rates of <3.1 x 10(-8) to 44.8 x 10(-8) mutations/cell/generation. This is the first report of a direct measurement of a spontaneous mutation rate of a microsatellite sequence in normal human cells.

UI MeSH Term Description Entries
D009154 Mutation Any detectable and heritable change in the genetic material that causes a change in the GENOTYPE and which is transmitted to daughter cells and to succeeding generations. Mutations
D002478 Cells, Cultured Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others. Cultured Cells,Cell, Cultured,Cultured Cell
D005347 Fibroblasts Connective tissue cells which secrete an extracellular matrix rich in collagen and other macromolecules. Fibroblast
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D018895 Microsatellite Repeats A variety of simple repeat sequences that are distributed throughout the GENOME. They are characterized by a short repeat unit of 2-8 basepairs that is repeated up to 100 times. They are also known as short tandem repeats (STRs). Microsatellite Markers,Pentanucleotide Repeats,Simple Repetitive Sequence,Tetranucleotide Repeats,Microsatellites,Short Tandem Repeats,Simple Sequence Repeats,Marker, Microsatellite,Markers, Microsatellite,Microsatellite,Microsatellite Marker,Microsatellite Repeat,Pentanucleotide Repeat,Repeat, Microsatellite,Repeat, Pentanucleotide,Repeat, Short Tandem,Repeat, Simple Sequence,Repeat, Tetranucleotide,Repeats, Microsatellite,Repeats, Pentanucleotide,Repeats, Short Tandem,Repeats, Simple Sequence,Repeats, Tetranucleotide,Repetitive Sequence, Simple,Repetitive Sequences, Simple,Sequence Repeat, Simple,Sequence Repeats, Simple,Sequence, Simple Repetitive,Sequences, Simple Repetitive,Short Tandem Repeat,Simple Repetitive Sequences,Simple Sequence Repeat,Tandem Repeat, Short,Tandem Repeats, Short,Tetranucleotide Repeat
D018900 Dinucleotide Repeats The most common of the microsatellite tandem repeats (MICROSATELLITE REPEATS) dispersed in the euchromatic arms of chromosomes. They consist of two nucleotides repeated in tandem; guanine and thymine, (GT)n, is the most frequently seen. Dinucleotide Repeat

Related Publications

J C Boyer, and R A Farber
January 2016, Biology letters,
J C Boyer, and R A Farber
March 2002, Genetica,
J C Boyer, and R A Farber
August 1974, Biochemical and biophysical research communications,
J C Boyer, and R A Farber
January 1987, Cancer research,
J C Boyer, and R A Farber
September 2017, The Journal of heredity,
J C Boyer, and R A Farber
January 2004, Mutation research,
J C Boyer, and R A Farber
December 2009, BMC genomics,
J C Boyer, and R A Farber
August 2002, Molecular biology and evolution,
J C Boyer, and R A Farber
October 2012, International journal of molecular sciences,
Copied contents to your clipboard!