Topological analysis of DcuA, an anaerobic C4-dicarboxylate transporter of Escherichia coli. 1998

P Golby, and D J Kelly, and J R Guest, and S C Andrews
School of Animal and Microbial Sciences, University of Reading, Reading RG6 6AJ, United Kingdom.

Escherichia coli possesses three independent anaerobic C4-dicarboxylate transport systems encoded by the dcuA, dcuB, and dcuC genes. The dcuA and dcuB genes encode related integral inner-membrane proteins, DcuA and DcuB (433 and 446 amino acid residues), which have 36% amino acid sequence identity. A previous amino acid sequence-based analysis predicted that DcuA and DcuB contain either 12 or 14 transmembrane helices, with the N and C termini located in the cytoplasm or periplasm (S. Six, S. C. Andrews, G. Unden, and J. R. Guest, J. Bacteriol. 176:6470-6478, 1994). These predictions were tested by constructing and analyzing 66 DcuA-BlaM fusions in which C terminally truncated forms of DcuA are fused to a beta-lactamase protein lacking the N-terminal signal peptide. The resulting topological model differs from those previously predicted. It has just 10 transmembrane helices and a central, 80-residue cytoplasmic loop between helices 5 and 6. The N and C termini are located in the periplasm and the predicted orientation is consistent with the "positive-inside rule." Two highly hydrophobic segments are not membrane spanning: one is in the cytoplasmic loop; the other is in the C-terminal periplasmic region. The topological model obtained for DcuA can be applied to DcuA homologues in other bacteria as well as to DcuB. Overproduction of DcuA to 15% of inner-membrane protein was obtained with the lacUV5-promoter-based plasmid, pYZ4.

UI MeSH Term Description Entries
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D011993 Recombinant Fusion Proteins Recombinant proteins produced by the GENETIC TRANSLATION of fused genes formed by the combination of NUCLEIC ACID REGULATORY SEQUENCES of one or more genes with the protein coding sequences of one or more genes. Fusion Proteins, Recombinant,Recombinant Chimeric Protein,Recombinant Fusion Protein,Recombinant Hybrid Protein,Chimeric Proteins, Recombinant,Hybrid Proteins, Recombinant,Recombinant Chimeric Proteins,Recombinant Hybrid Proteins,Chimeric Protein, Recombinant,Fusion Protein, Recombinant,Hybrid Protein, Recombinant,Protein, Recombinant Chimeric,Protein, Recombinant Fusion,Protein, Recombinant Hybrid,Proteins, Recombinant Chimeric,Proteins, Recombinant Fusion,Proteins, Recombinant Hybrid
D012097 Repressor Proteins Proteins which maintain the transcriptional quiescence of specific GENES or OPERONS. Classical repressor proteins are DNA-binding proteins that are normally bound to the OPERATOR REGION of an operon, or the ENHANCER SEQUENCES of a gene until a signal occurs that causes their release. Repressor Molecules,Transcriptional Silencing Factors,Proteins, Repressor,Silencing Factors, Transcriptional
D002352 Carrier Proteins Proteins that bind or transport specific substances in the blood, within the cell, or across cell membranes. Binding Proteins,Carrier Protein,Transport Protein,Transport Proteins,Binding Protein,Protein, Carrier,Proteins, Carrier
D003998 Dicarboxylic Acids Acyclic acids that contain two carboxyl groups and have the formula HO2C-R-CO2H, where R may be an aromatic or aliphatic group. Acids, Dicarboxylic
D004926 Escherichia coli A species of gram-negative, facultatively anaerobic, rod-shaped bacteria (GRAM-NEGATIVE FACULTATIVELY ANAEROBIC RODS) commonly found in the lower part of the intestine of warm-blooded animals. It is usually nonpathogenic, but some strains are known to produce DIARRHEA and pyogenic infections. Pathogenic strains (virotypes) are classified by their specific pathogenic mechanisms such as toxins (ENTEROTOXIGENIC ESCHERICHIA COLI), etc. Alkalescens-Dispar Group,Bacillus coli,Bacterium coli,Bacterium coli commune,Diffusely Adherent Escherichia coli,E coli,EAggEC,Enteroaggregative Escherichia coli,Enterococcus coli,Diffusely Adherent E. coli,Enteroaggregative E. coli,Enteroinvasive E. coli,Enteroinvasive Escherichia coli
D000595 Amino Acid Sequence The order of amino acids as they occur in a polypeptide chain. This is referred to as the primary structure of proteins. It is of fundamental importance in determining PROTEIN CONFORMATION. Protein Structure, Primary,Amino Acid Sequences,Sequence, Amino Acid,Sequences, Amino Acid,Primary Protein Structure,Primary Protein Structures,Protein Structures, Primary,Structure, Primary Protein,Structures, Primary Protein
D000693 Anaerobiosis The complete absence, or (loosely) the paucity, of gaseous or dissolved elemental oxygen in a given place or environment. (From Singleton & Sainsbury, Dictionary of Microbiology and Molecular Biology, 2d ed) Anaerobic Metabolism,Anaerobic Metabolisms,Anaerobioses,Metabolism, Anaerobic,Metabolisms, Anaerobic
D001426 Bacterial Proteins Proteins found in any species of bacterium. Bacterial Gene Products,Bacterial Gene Proteins,Gene Products, Bacterial,Bacterial Gene Product,Bacterial Gene Protein,Bacterial Protein,Gene Product, Bacterial,Gene Protein, Bacterial,Gene Proteins, Bacterial,Protein, Bacterial,Proteins, Bacterial
D014157 Transcription Factors Endogenous substances, usually proteins, which are effective in the initiation, stimulation, or termination of the genetic transcription process. Transcription Factor,Factor, Transcription,Factors, Transcription

Related Publications

P Golby, and D J Kelly, and J R Guest, and S C Andrews
September 2022, FEMS microbiology letters,
P Golby, and D J Kelly, and J R Guest, and S C Andrews
October 2023, Microbiology (Reading, England),
P Golby, and D J Kelly, and J R Guest, and S C Andrews
January 2001, FEMS microbiology letters,
P Golby, and D J Kelly, and J R Guest, and S C Andrews
June 2018, MicrobiologyOpen,
P Golby, and D J Kelly, and J R Guest, and S C Andrews
December 2004, EcoSal Plus,
P Golby, and D J Kelly, and J R Guest, and S C Andrews
June 2016, EcoSal Plus,
P Golby, and D J Kelly, and J R Guest, and S C Andrews
October 1973, Experientia,
P Golby, and D J Kelly, and J R Guest, and S C Andrews
June 1999, Journal of bacteriology,
Copied contents to your clipboard!