Redesign of choline acetyltransferase specificity by protein engineering. 1998

C N Cronin
Molecular Biology Division, Department of Veterans Affairs Medical Center, San Francisco, California 94121, USA. ciaran@itsa.ucsf.edu

Since the development of site-directed mutagenesis techniques over 15 years ago (Zoller, M. J., and Smith, M. (1982) Nucleic Acids Res. 10, 6487-6500), it has been a goal of protein engineering to utilize the procedure to redesign existing enzyme structures to produce proteins with altered or novel catalytic properties. To date, however, the more successful achievements have relied exclusively on the availability of three-dimensional protein structure maps to direct the redesign strategies. Presently, such maps are unavailable for choline acetyltransferase and carnitine acetyltransferase, enzymes that catalyze the reversible transfer of an acetyl group from acetyl-CoA to choline and L-carnitine, respectively. A more empirical approach, based on cross-referencing substrate structure comparisons with protein alignment data, was used to redesign choline acetyltransferase to accommodate L-carnitine as an acceptor of the acetyl group. A mutant choline acetyltransferase that incorporates four amino acid substitutions from wild type, shows a substantial increase in catalytic efficiency (kcat/Km) toward L-carnitine (1,620-fold) and shifts the catalytic discrimination between choline and L-carnitine by >390,000 in favor of the latter substrate. These dramatic alterations in catalytic function demonstrate that significant success in protein redesign can be achieved in the absence of three-dimensional protein structure data.

UI MeSH Term Description Entries
D007700 Kinetics The rate dynamics in chemical or physical systems.
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D011994 Recombinant Proteins Proteins prepared by recombinant DNA technology. Biosynthetic Protein,Biosynthetic Proteins,DNA Recombinant Proteins,Recombinant Protein,Proteins, Biosynthetic,Proteins, Recombinant DNA,DNA Proteins, Recombinant,Protein, Biosynthetic,Protein, Recombinant,Proteins, DNA Recombinant,Proteins, Recombinant,Recombinant DNA Proteins,Recombinant Proteins, DNA
D002331 Carnitine A constituent of STRIATED MUSCLE and LIVER. It is an amino acid derivative and an essential cofactor for fatty acid metabolism. Bicarnesine,L-Carnitine,Levocarnitine,Vitamin BT,L Carnitine
D002333 Carnitine Acyltransferases Acyltransferases in the inner mitochondrial membrane that catalyze the reversible transfer of acyl groups from acyl-CoA to L-carnitine and thereby mediate the transport of activated fatty acids through that membrane. EC 2.3.1. Acylcarnitine Translocase,Carnitine Translocase,Carnitine-Acetylcarnitine Translocase,Carnitine-Acylcarnitine Translocase,Acyltransferases, Carnitine,Carnitine Acetylcarnitine Translocase,Carnitine Acylcarnitine Translocase,Translocase, Acylcarnitine,Translocase, Carnitine,Translocase, Carnitine-Acetylcarnitine,Translocase, Carnitine-Acylcarnitine
D002795 Choline O-Acetyltransferase An enzyme that catalyzes the formation of acetylcholine from acetyl-CoA and choline. EC 2.3.1.6. Choline Acetylase,Choline Acetyltransferase,Acetylase, Choline,Acetyltransferase, Choline,Choline O Acetyltransferase,O-Acetyltransferase, Choline
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000595 Amino Acid Sequence The order of amino acids as they occur in a polypeptide chain. This is referred to as the primary structure of proteins. It is of fundamental importance in determining PROTEIN CONFORMATION. Protein Structure, Primary,Amino Acid Sequences,Sequence, Amino Acid,Sequences, Amino Acid,Primary Protein Structure,Primary Protein Structures,Protein Structures, Primary,Structure, Primary Protein,Structures, Primary Protein
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D013379 Substrate Specificity A characteristic feature of enzyme activity in relation to the kind of substrate on which the enzyme or catalytic molecule reacts. Specificities, Substrate,Specificity, Substrate,Substrate Specificities

Related Publications

C N Cronin
August 2004, The Journal of biological chemistry,
C N Cronin
April 2004, Nature structural & molecular biology,
C N Cronin
January 1983, The Journal of neuroscience : the official journal of the Society for Neuroscience,
C N Cronin
November 1977, CRC critical reviews in biochemistry,
C N Cronin
September 1971, Nature: New biology,
C N Cronin
April 1974, The Journal of biological chemistry,
Copied contents to your clipboard!