Preferential binding of high mobility group 1 protein to UV-damaged DNA. Role of the COOH-terminal domain. 1998

E A Pasheva, and I G Pashev, and A Favre
Institute of Molecular Biology, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria. eva@obzor.bio21.bas.bg

Binding of chromosomal high mobility group 1 protein (HMG1) to UV-damaged DNA has been studied with oligonucleotides containing a single dipyrimidine site for formation of UV photolesions. Irradiation of an oligonucleotide with unique TT dinucleotide resulted in generation of cyclobutane pyrimidine dimer with no evidence for induction of (6-4) photoproducts, whereas the analysis of irradiated TC-containing oligonucleotide detected (6-4) photoproducts but not cyclobutane pyrimidine dimers. Mobility shift assays have revealed that HMG1 protein binds preferentially to irradiated TT and TC oligonucleotides. Photoreversal of cyclobutane pyrimidine dimers with DNA photolyase and hydrolysis of the (6-4) photoproducts with hot alkali substantially reduced but did not eliminate binding of HMG1. The protein, therefore, appears to bind the two main types of UV damages in DNA, but some other photolesion(s) contributes to the preferential binding of HMG1 to irradiated DNA. By quantifying gel shift assays and considering the efficiencies of lesion formation, we determined dissociation constants of 1.2 +/- 0.5 and 4.0 +/- 1.5 microM for irradiated TT and TC oligonucleotides, respectively, and 70 +/- 20 microM for the control non-irradiated probes. Tryptic removal of the acidic COOH-terminal domain of HMG1 significantly affected binding of the protein to both irradiated and intact oligonucleotides. The potential role of HMG1 in recognition of the UV lesions in DNA is discussed.

UI MeSH Term Description Entries
D009838 Oligodeoxyribonucleotides A group of deoxyribonucleotides (up to 12) in which the phosphate residues of each deoxyribonucleotide act as bridges in forming diester linkages between the deoxyribose moieties. Oligodeoxynucleotide,Oligodeoxyribonucleotide,Oligodeoxynucleotides
D002417 Cattle Domesticated bovine animals of the genus Bos, usually kept on a farm or ranch and used for the production of meat or dairy products or for heavy labor. Beef Cow,Bos grunniens,Bos indicus,Bos indicus Cattle,Bos taurus,Cow,Cow, Domestic,Dairy Cow,Holstein Cow,Indicine Cattle,Taurine Cattle,Taurus Cattle,Yak,Zebu,Beef Cows,Bos indicus Cattles,Cattle, Bos indicus,Cattle, Indicine,Cattle, Taurine,Cattle, Taurus,Cattles, Bos indicus,Cattles, Indicine,Cattles, Taurine,Cattles, Taurus,Cow, Beef,Cow, Dairy,Cow, Holstein,Cows,Dairy Cows,Domestic Cow,Domestic Cows,Indicine Cattles,Taurine Cattles,Taurus Cattles,Yaks,Zebus
D002467 Cell Nucleus Within a eukaryotic cell, a membrane-limited body which contains chromosomes and one or more nucleoli (CELL NUCLEOLUS). The nuclear membrane consists of a double unit-type membrane which is perforated by a number of pores; the outermost membrane is continuous with the ENDOPLASMIC RETICULUM. A cell may contain more than one nucleus. (From Singleton & Sainsbury, Dictionary of Microbiology and Molecular Biology, 2d ed) Cell Nuclei,Nuclei, Cell,Nucleus, Cell
D004247 DNA A deoxyribonucleotide polymer that is the primary genetic material of all cells. Eukaryotic and prokaryotic organisms normally contain DNA in a double-stranded state, yet several important biological processes transiently involve single-stranded regions. DNA, which consists of a polysugar-phosphate backbone possessing projections of purines (adenine and guanine) and pyrimidines (thymine and cytosine), forms a double helix that is held together by hydrogen bonds between these purines and pyrimidines (adenine to thymine and guanine to cytosine). DNA, Double-Stranded,Deoxyribonucleic Acid,ds-DNA,DNA, Double Stranded,Double-Stranded DNA,ds DNA
D004249 DNA Damage Injuries to DNA that introduce deviations from its normal, intact structure and which may, if left unrepaired, result in a MUTATION or a block of DNA REPLICATION. These deviations may be caused by physical or chemical agents and occur by natural or unnatural, introduced circumstances. They include the introduction of illegitimate bases during replication or by deamination or other modification of bases; the loss of a base from the DNA backbone leaving an abasic site; single-strand breaks; double strand breaks; and intrastrand (PYRIMIDINE DIMERS) or interstrand crosslinking. Damage can often be repaired (DNA REPAIR). If the damage is extensive, it can induce APOPTOSIS. DNA Injury,DNA Lesion,DNA Lesions,Genotoxic Stress,Stress, Genotoxic,Injury, DNA,DNA Injuries
D004273 DNA, Neoplasm DNA present in neoplastic tissue. Neoplasm DNA
D004307 Dose-Response Relationship, Radiation The relationship between the dose of administered radiation and the response of the organism or tissue to the radiation. Dose Response Relationship, Radiation,Dose-Response Relationships, Radiation,Radiation Dose-Response Relationship,Radiation Dose-Response Relationships,Relationship, Radiation Dose-Response,Relationships, Radiation Dose-Response
D006609 High Mobility Group Proteins A family of low-molecular weight, non-histone proteins found in chromatin. HMG Proteins,Calf Thymus Chromatin Protein HMG,High Mobility Group Chromosomal Proteins
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001483 Base Sequence The sequence of PURINES and PYRIMIDINES in nucleic acids and polynucleotides. It is also called nucleotide sequence. DNA Sequence,Nucleotide Sequence,RNA Sequence,DNA Sequences,Base Sequences,Nucleotide Sequences,RNA Sequences,Sequence, Base,Sequence, DNA,Sequence, Nucleotide,Sequence, RNA,Sequences, Base,Sequences, DNA,Sequences, Nucleotide,Sequences, RNA

Related Publications

E A Pasheva, and I G Pashev, and A Favre
May 2002, Proceedings of the National Academy of Sciences of the United States of America,
E A Pasheva, and I G Pashev, and A Favre
November 1992, Biochemical and biophysical research communications,
E A Pasheva, and I G Pashev, and A Favre
April 2003, The Journal of biological chemistry,
E A Pasheva, and I G Pashev, and A Favre
November 1993, The Journal of biological chemistry,
E A Pasheva, and I G Pashev, and A Favre
November 1993, Biochemistry,
E A Pasheva, and I G Pashev, and A Favre
August 1990, Biochemistry international,
E A Pasheva, and I G Pashev, and A Favre
May 1998, Molecular endocrinology (Baltimore, Md.),
E A Pasheva, and I G Pashev, and A Favre
November 1997, Biochimica et biophysica acta,
E A Pasheva, and I G Pashev, and A Favre
August 2002, DNA repair,
Copied contents to your clipboard!