Intrinsic protein electric fields: basic non-covalent interactions and relationship to protein-induced Stark effects. 1998
Knowledge of the interactions involving charged, polar and polarizable groups in proteins is fundamental, not only because they are important determinants for gaining insight into biophysical molecular recognition and assembly processes, but also for understanding how the matrix of a protein can be viewed as an electric field capable of inducing Stark perturbations on the spectral properties of biological optical centers. This review describes the essential features of noncovalent interactions in protein systems and discusses the concept of the dielectric constant of a protein in the context of different microscopic and macroscopic modeling approaches. It also provides an account of a specific type of high resolution vibrational and optical Stark spectroscopy attempting to correlate the observed spectral properties of biological optical centers to the intrinsic protein fields induced by the matrix in which they reside.