Impaired blood-brain barrier function in angiotensinogen-deficient mice. 1998

Y Kakinuma, and H Hama, and F Sugiyama, and K Yagami, and K Goto, and K Murakami, and A Fukamizu
Department of Pharmacology, Institute of Basic Medical Sciences, University of Tsukuba, Ibaraki, Japan.

Astrocytes in the central nervous system have physiologically important roles in the response to brain injury. Brain damage results in disruption of the blood-brain barrier (BBB), producing detachment of astrocyte endfeet from endothelial cells. The resultant leakage of serum proteins from loosened tight junctions between endothelial cells produces brain edema. At the same time, reactive astrocytes migrate to the injured area, where they proliferate and produce extracellular matrix, thereby reconstituting the BBB. As astrocytes are known to express angiotensinogen, which is the precursor of angiotensins (AI to AIV), we have investigated a possible functional contribution of angiotensinogen or one of its metabolites to BBB reconstitution. The astrocytes of angiotensinogen knockout mice had very attenuated expression of glial fibrially acidic protein and decreased laminin production in response to cold injury, and ultimately incomplete reconstitution of impaired BBB function. Although these abnormalities were rescued by administration of AII or AIV, the restoration of BBB function was not inhibited by AII type 1 and 2 receptor antagonists. These findings provide evidence that astrocytes with angiotensins are required for functional maintenance of the BBB.

UI MeSH Term Description Entries
D001812 Blood-Brain Barrier Specialized non-fenestrated tightly-joined ENDOTHELIAL CELLS with TIGHT JUNCTIONS that form a transport barrier for certain substances between the cerebral capillaries and the BRAIN tissue. Brain-Blood Barrier,Hemato-Encephalic Barrier,Barrier, Blood-Brain,Barrier, Brain-Blood,Barrier, Hemato-Encephalic,Barriers, Blood-Brain,Barriers, Brain-Blood,Barriers, Hemato-Encephalic,Blood Brain Barrier,Blood-Brain Barriers,Brain Blood Barrier,Brain-Blood Barriers,Hemato Encephalic Barrier,Hemato-Encephalic Barriers
D001930 Brain Injuries Acute and chronic (see also BRAIN INJURIES, CHRONIC) injuries to the brain, including the cerebral hemispheres, CEREBELLUM, and BRAIN STEM. Clinical manifestations depend on the nature of injury. Diffuse trauma to the brain is frequently associated with DIFFUSE AXONAL INJURY or COMA, POST-TRAUMATIC. Localized injuries may be associated with NEUROBEHAVIORAL MANIFESTATIONS; HEMIPARESIS, or other focal neurologic deficits. Brain Lacerations,Acute Brain Injuries,Brain Injuries, Acute,Brain Injuries, Focal,Focal Brain Injuries,Injuries, Acute Brain,Injuries, Brain,Acute Brain Injury,Brain Injury,Brain Injury, Acute,Brain Injury, Focal,Brain Laceration,Focal Brain Injury,Injuries, Focal Brain,Injury, Acute Brain,Injury, Brain,Injury, Focal Brain,Laceration, Brain,Lacerations, Brain
D002448 Cell Adhesion Adherence of cells to surfaces or to other cells. Adhesion, Cell,Adhesions, Cell,Cell Adhesions
D002478 Cells, Cultured Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others. Cultured Cells,Cell, Cultured,Cultured Cell
D005904 Glial Fibrillary Acidic Protein An intermediate filament protein found only in glial cells or cells of glial origin. MW 51,000. Glial Intermediate Filament Protein,Astroprotein,GFA-Protein,Glial Fibrillary Acid Protein,GFA Protein
D000804 Angiotensin II An octapeptide that is a potent but labile vasoconstrictor. It is produced from angiotensin I after the removal of two amino acids at the C-terminal by ANGIOTENSIN CONVERTING ENZYME. The amino acid in position 5 varies in different species. To block VASOCONSTRICTION and HYPERTENSION effect of angiotensin II, patients are often treated with ACE INHIBITORS or with ANGIOTENSIN II TYPE 1 RECEPTOR BLOCKERS. Angiotensin II, Ile(5)-,Angiotensin II, Val(5)-,5-L-Isoleucine Angiotensin II,ANG-(1-8)Octapeptide,Angiotensin II, Isoleucine(5)-,Angiotensin II, Valine(5)-,Angiotensin-(1-8) Octapeptide,Isoleucine(5)-Angiotensin,Isoleucyl(5)-Angiotensin II,Valyl(5)-Angiotensin II,5 L Isoleucine Angiotensin II,Angiotensin II, 5-L-Isoleucine
D000808 Angiotensinogen An alpha-globulin of about 453 amino acids, depending on the species. It is produced by the liver in response to lowered blood pressure and secreted into blood circulation. Angiotensinogen is the inactive precursor of the ANGIOTENSINS produced in the body by successive enzyme cleavages. Cleavage of angiotensinogen by RENIN yields the decapeptide ANGIOTENSIN I. Further cleavage of angiotensin I (by ANGIOTENSIN CONVERTING ENZYME) yields the potent vasoconstrictor octapeptide ANGIOTENSIN II; and then, via other enzymes, other angiotensins also involved in the hemodynamic-regulating RENIN-ANGIOTENSIN SYSTEM. Hypertensinogen,Renin-Substrate,SERPINA8,Proangiotensin,Renin Substrate Tetradecapeptide,Serpin A8,Renin Substrate,Tetradecapeptide, Renin Substrate
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001253 Astrocytes A class of large neuroglial (macroglial) cells in the central nervous system - the largest and most numerous neuroglial cells in the brain and spinal cord. Astrocytes (from "star" cells) are irregularly shaped with many long processes, including those with "end feet" which form the glial (limiting) membrane and directly and indirectly contribute to the BLOOD-BRAIN BARRIER. They regulate the extracellular ionic and chemical environment, and "reactive astrocytes" (along with MICROGLIA) respond to injury. Astroglia,Astroglia Cells,Astroglial Cells,Astrocyte,Astroglia Cell,Astroglial Cell,Astroglias,Cell, Astroglia,Cell, Astroglial
D051379 Mice The common name for the genus Mus. Mice, House,Mus,Mus musculus,Mice, Laboratory,Mouse,Mouse, House,Mouse, Laboratory,Mouse, Swiss,Mus domesticus,Mus musculus domesticus,Swiss Mice,House Mice,House Mouse,Laboratory Mice,Laboratory Mouse,Mice, Swiss,Swiss Mouse,domesticus, Mus musculus

Related Publications

Y Kakinuma, and H Hama, and F Sugiyama, and K Yagami, and K Goto, and K Murakami, and A Fukamizu
April 1998, Glia,
Y Kakinuma, and H Hama, and F Sugiyama, and K Yagami, and K Goto, and K Murakami, and A Fukamizu
December 2008, Current hypertension reports,
Y Kakinuma, and H Hama, and F Sugiyama, and K Yagami, and K Goto, and K Murakami, and A Fukamizu
June 2014, Neuroscience letters,
Y Kakinuma, and H Hama, and F Sugiyama, and K Yagami, and K Goto, and K Murakami, and A Fukamizu
December 1994, The Journal of biological chemistry,
Y Kakinuma, and H Hama, and F Sugiyama, and K Yagami, and K Goto, and K Murakami, and A Fukamizu
January 2021, Frontiers in cell and developmental biology,
Y Kakinuma, and H Hama, and F Sugiyama, and K Yagami, and K Goto, and K Murakami, and A Fukamizu
October 2000, The Journal of investigative dermatology,
Y Kakinuma, and H Hama, and F Sugiyama, and K Yagami, and K Goto, and K Murakami, and A Fukamizu
March 2002, Clinical immunology (Orlando, Fla.),
Y Kakinuma, and H Hama, and F Sugiyama, and K Yagami, and K Goto, and K Murakami, and A Fukamizu
July 2008, Neuroscience,
Y Kakinuma, and H Hama, and F Sugiyama, and K Yagami, and K Goto, and K Murakami, and A Fukamizu
May 2003, The Journal of cell biology,
Y Kakinuma, and H Hama, and F Sugiyama, and K Yagami, and K Goto, and K Murakami, and A Fukamizu
August 2008, Parkinsonism & related disorders,
Copied contents to your clipboard!