Identification of oxidized low density lipoprotein in human renal biopsies. 1998

H S Lee, and Y S Kim
Department of Pathology, Seoul National University College of Medicine, Korea. hyunsoon@plaza.snu.ac.kr

BACKGROUND Intraglomerular lipid deposition is frequently observed in routine renal biopsies, and it has been suggested that lipid peroxidation of low density lipoprotein (LDL) may be implicated in the pathogenesis of progressive glomerulosclerosis. We have examined whether oxidized LDL (Ox-LDL) is present in the glomeruli of patients with renal disease and whether intrinsic human glomerular cells express NADPH-oxidase (a superoxide-generating enzyme found in professional phagocytes). METHODS Immunocytochemical study was performed on 939 renal biopsy specimens, using monoclonal antibodies (mAbs) OL-10, 48 and 449, and polyclonal antibody against human apolipoprotein (apo) B. Mouse mAb OL-10 recognizes malondialdehyde (MDA)-modified peptide epitope, and mAbs 48 and 449 react with alpha and beta subunits of cytochrome b558, an essential component of NADPH-oxidase. RESULTS Sixty-two (6.6%) of the 939 patients with renal disease exhibited a staining for MDA-altered protein or Ox-LDL in the glomeruli, mainly in the sclerotic segments or mesangial areas. Group 1 patients with heavy Ox-LDL deposition mainly in the sclerotic segments showed a higher frequency of renal insufficiency and heavy proteinuria and a greater degree of glomerulosclerosis, compared to those in group 2 with mesangial Ox-LDL staining. The distribution of MDA protein epitopes, in general, paralleled the deposition of apo B epitopes. Immunoelectron microscopy of ultrathin frozen sections showed the presence of immunogold particles for mAbs 48 and 449 in the cytoplasm of resident glomerular cells of both normal and diseased kidneys. When immunoblotted with mAb OL-10, one band from the IgA nephropathy and focal segmental glomerulosclerosis groups at approximately 260 kD was labeled, whereas immunostaining of normal control samples revealed no staining. CONCLUSIONS These results indicate that Ox-LDL is present mainly in the lesions of glomerulosclerosis and mesangial areas in human renal biopsies. They also suggest that patients with heavy Ox-LDL accumulation in the sclerotic segments of glomeruli have more advanced renal disease than those with mesangial Ox-LDL and that resident glomerular cells generate cytochrome b558, the potential of which may not suffice to induce peroxidation of LDL in the diseased glomeruli.

UI MeSH Term Description Entries
D007668 Kidney Body organ that filters blood for the secretion of URINE and that regulates ion concentrations. Kidneys
D008077 Lipoproteins, LDL A class of lipoproteins of small size (18-25 nm) and light (1.019-1.063 g/ml) particles with a core composed mainly of CHOLESTEROL ESTERS and smaller amounts of TRIGLYCERIDES. The surface monolayer consists mostly of PHOSPHOLIPIDS, a single copy of APOLIPOPROTEIN B-100, and free cholesterol molecules. The main LDL function is to transport cholesterol and cholesterol esters to extrahepatic tissues. Low-Density Lipoprotein,Low-Density Lipoproteins,beta-Lipoprotein,beta-Lipoproteins,LDL(1),LDL(2),LDL-1,LDL-2,LDL1,LDL2,Low-Density Lipoprotein 1,Low-Density Lipoprotein 2,LDL Lipoproteins,Lipoprotein, Low-Density,Lipoproteins, Low-Density,Low Density Lipoprotein,Low Density Lipoprotein 1,Low Density Lipoprotein 2,Low Density Lipoproteins,beta Lipoprotein,beta Lipoproteins
D008297 Male Males
D008315 Malondialdehyde The dialdehyde of malonic acid. Malonaldehyde,Propanedial,Malonylaldehyde,Malonyldialdehyde,Sodium Malondialdehyde,Malondialdehyde, Sodium
D008875 Middle Aged An adult aged 45 - 64 years. Middle Age
D003573 Cytochrome b Group Cytochromes (electron-transporting proteins) with protoheme (HEME B) as the prosthetic group. Cytochromes Type b,Cytochromes, Heme b,Group, Cytochrome b,Heme b Cytochromes,Type b, Cytochromes,b Cytochromes, Heme,b Group, Cytochrome
D005260 Female Females
D005923 Glomerulosclerosis, Focal Segmental A clinicopathological syndrome or diagnostic term for a type of glomerular injury that has multiple causes, primary or secondary. Clinical features include PROTEINURIA, reduced GLOMERULAR FILTRATION RATE, and EDEMA. Kidney biopsy initially indicates focal segmental glomerular consolidation (hyalinosis) or scarring which can progress to globally sclerotic glomeruli leading to eventual KIDNEY FAILURE. Glomerulonephritis, Focal Sclerosing,Hyalinosis, Segmental Glomerular,Focal Segmental Glomerulosclerosis,Glomerulosclerosis, Focal,Hyalinosis, Segmental,Segmental Glomerular Hyalinosis,Focal Glomerulosclerosis,Focal Sclerosing Glomerulonephritides,Focal Sclerosing Glomerulonephritis,Glomerular Hyalinosis, Segmental,Glomerulonephritides, Focal Sclerosing,Sclerosing Glomerulonephritides, Focal,Sclerosing Glomerulonephritis, Focal,Segmental Glomerulosclerosis, Focal,Segmental Hyalinosis
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000293 Adolescent A person 13 to 18 years of age. Adolescence,Youth,Adolescents,Adolescents, Female,Adolescents, Male,Teenagers,Teens,Adolescent, Female,Adolescent, Male,Female Adolescent,Female Adolescents,Male Adolescent,Male Adolescents,Teen,Teenager,Youths

Related Publications

H S Lee, and Y S Kim
October 1998, Clinical science (London, England : 1979),
H S Lee, and Y S Kim
May 2002, Current opinion in nephrology and hypertension,
H S Lee, and Y S Kim
January 2010, Methods in molecular biology (Clifton, N.J.),
H S Lee, and Y S Kim
January 2000, Nihon rinsho. Japanese journal of clinical medicine,
H S Lee, and Y S Kim
December 2010, Arteriosclerosis, thrombosis, and vascular biology,
H S Lee, and Y S Kim
January 1999, Biochimica et biophysica acta,
H S Lee, and Y S Kim
August 2000, Nihon Ronen Igakkai zasshi. Japanese journal of geriatrics,
Copied contents to your clipboard!