Occurrence of oxidized metabolites of arachidonic acid esterified to phospholipids in murine lung tissue. 1998

T Nakamura, and P M Henson, and R C Murphy
National Jewish Medical and Research Center, 1400 Jackson Street, Denver, Colorado, 80206, USA.

Isolation and characterization of murine pulmonary phospholipids revealed the normal occurrence of 10 isobaric eicosanoids corresponding to the incorporation of one oxygen atom into the arachidonate esterified to glycerophospholipids. Lungs from mice were removed and lipids were extracted and then separated into free carboxylic acid and phospholipids. Phospholipids were hydrolyzed to yield the free carboxylic acids prior to analysis. Reverse-phase HPLC and electrospray tandem mass spectrometry were used to identify and quantitate six monohydroxyeicosatetraenoic (HETE) and four epoxyeicosatetraenoic (EET) acid regioisomers using d8-HETE as internal standard. HETEs esterified to phospholipids were found to increase following intratracheal administration of tBuOOH (36 mg/kg), but not the levels of esterified EETs. Chiral analysis of esterified 15-HETE revealed an R/S ratio of 0.96, suggesting operation of a free radical mechanism responsible for generation of this monohydroxy arachidonate phospholipid, and this enantiomeric ratio was 1.10 following treatment of the mouse lung with tBuOOH. These results are consistent with a free-radical-based mechanism of oxidation of pulmonary glycerophospholipids containing arachidonate.

UI MeSH Term Description Entries
D007536 Isomerism The phenomenon whereby certain chemical compounds have structures that are different although the compounds possess the same elemental composition. (From McGraw-Hill Dictionary of Scientific and Technical Terms, 5th ed) Isomerisms
D008084 Lipoxygenase An enzyme of the oxidoreductase class primarily found in PLANTS. It catalyzes reactions between linoleate and other fatty acids and oxygen to form hydroperoxy-fatty acid derivatives. Lipoxidase,Linoleate-Oxygen Oxidoreductase,Lipoxygenase-1,Lipoxygenase-2,Linoleate Oxygen Oxidoreductase,Lipoxygenase 1,Lipoxygenase 2,Oxidoreductase, Linoleate-Oxygen
D008168 Lung Either of the pair of organs occupying the cavity of the thorax that effect the aeration of the blood. Lungs
D008815 Mice, Inbred Strains Genetically identical individuals developed from brother and sister matings which have been carried out for twenty or more generations, or by parent x offspring matings carried out with certain restrictions. All animals within an inbred strain trace back to a common ancestor in the twentieth generation. Inbred Mouse Strains,Inbred Strain of Mice,Inbred Strain of Mouse,Inbred Strains of Mice,Mouse, Inbred Strain,Inbred Mouse Strain,Mouse Inbred Strain,Mouse Inbred Strains,Mouse Strain, Inbred,Mouse Strains, Inbred,Strain, Inbred Mouse,Strains, Inbred Mouse
D010084 Oxidation-Reduction A chemical reaction in which an electron is transferred from one molecule to another. The electron-donating molecule is the reducing agent or reductant; the electron-accepting molecule is the oxidizing agent or oxidant. Reducing and oxidizing agents function as conjugate reductant-oxidant pairs or redox pairs (Lehninger, Principles of Biochemistry, 1982, p471). Redox,Oxidation Reduction
D010100 Oxygen An element with atomic symbol O, atomic number 8, and atomic weight [15.99903; 15.99977]. It is the most abundant element on earth and essential for respiration. Dioxygen,Oxygen-16,Oxygen 16
D010545 Peroxides A group of compounds that contain a bivalent O-O group, i.e., the oxygen atoms are univalent. They can either be inorganic or organic in nature. Such compounds release atomic (nascent) oxygen readily. Thus they are strong oxidizing agents and fire hazards when in contact with combustible materials, especially under high-temperature conditions. The chief industrial uses of peroxides are as oxidizing agents, bleaching agents, and initiators of polymerization. (From Hawley's Condensed Chemical Dictionary, 11th ed) Peroxide
D010712 Phosphatidic Acids Fatty acid derivatives of glycerophosphates. They are composed of glycerol bound in ester linkage with 1 mole of phosphoric acid at the terminal 3-hydroxyl group and with 2 moles of fatty acids at the other two hydroxyl groups. Ammonium Phosphatidate,Diacylglycerophosphates,Phosphatidic Acid,Acid, Phosphatidic,Acids, Phosphatidic,Phosphatidate, Ammonium
D011451 Prostaglandin-Endoperoxide Synthases Enzyme complexes that catalyze the formation of PROSTAGLANDINS from the appropriate unsaturated FATTY ACIDS, molecular OXYGEN, and a reduced acceptor. Fatty Acid Cyclo-Oxygenase,PGH Synthase,Prostaglandin H Synthase,Prostaglandin Synthase,Prostaglandin-Endoperoxide Synthase,Arachidonic Acid Cyclooxygenase,Cyclo-Oxygenase,Cyclooxygenase,Cyclooxygenases,Hydroperoxide Cyclase,PGH2 Synthetase,Prostaglandin Cyclo-Oxygenase,Prostaglandin Cyclooxygenase,Prostaglandin Endoperoxide Synthetase,Prostaglandin G-H Synthase,Prostaglandin H2 Synthetase,Prostaglandin Synthetase,Cyclase, Hydroperoxide,Cyclo Oxygenase,Cyclo-Oxygenase, Fatty Acid,Cyclo-Oxygenase, Prostaglandin,Cyclooxygenase, Arachidonic Acid,Cyclooxygenase, Prostaglandin,Endoperoxide Synthetase, Prostaglandin,Fatty Acid Cyclo Oxygenase,G-H Synthase, Prostaglandin,Prostaglandin Cyclo Oxygenase,Prostaglandin Endoperoxide Synthases,Prostaglandin G H Synthase,Synthase, PGH,Synthase, Prostaglandin,Synthase, Prostaglandin G-H,Synthase, Prostaglandin H,Synthase, Prostaglandin-Endoperoxide,Synthases, Prostaglandin-Endoperoxide,Synthetase, PGH2,Synthetase, Prostaglandin,Synthetase, Prostaglandin Endoperoxide,Synthetase, Prostaglandin H2
D002851 Chromatography, High Pressure Liquid Liquid chromatographic techniques which feature high inlet pressures, high sensitivity, and high speed. Chromatography, High Performance Liquid,Chromatography, High Speed Liquid,Chromatography, Liquid, High Pressure,HPLC,High Performance Liquid Chromatography,High-Performance Liquid Chromatography,UPLC,Ultra Performance Liquid Chromatography,Chromatography, High-Performance Liquid,High-Performance Liquid Chromatographies,Liquid Chromatography, High-Performance

Related Publications

T Nakamura, and P M Henson, and R C Murphy
November 1998, Doklady Akademii nauk,
T Nakamura, and P M Henson, and R C Murphy
January 1987, Agents and actions. Supplements,
T Nakamura, and P M Henson, and R C Murphy
January 1989, International journal of immunopharmacology,
T Nakamura, and P M Henson, and R C Murphy
September 1989, Prostaglandins, leukotrienes, and essential fatty acids,
T Nakamura, and P M Henson, and R C Murphy
April 1986, Sheng li ke xue jin zhan [Progress in physiology],
T Nakamura, and P M Henson, and R C Murphy
January 1985, Federation proceedings,
T Nakamura, and P M Henson, and R C Murphy
September 1986, Journal of lipid research,
T Nakamura, and P M Henson, and R C Murphy
February 1986, Pharmacological research communications,
T Nakamura, and P M Henson, and R C Murphy
September 1984, The American journal of the medical sciences,
T Nakamura, and P M Henson, and R C Murphy
January 1984, Bibliotheca cardiologica,
Copied contents to your clipboard!