Iron and phosphate content of rat ferritin heteropolymers. 1998

S H Juan, and S D Aust
Biotechnology Center, Utah State University, Logan 84322-4705, USA.

An attempt was made to relate the iron and phosphate content of ferritin to its subunit composition. Ferritins from various tissues were separated according to their subunit composition by anion exchange chromatography and according to their iron content by density-gradient centrifugation. Iron and phosphate contents were not related to subunit composition. Recombinant rat liver ferritin heteropolymers of different subunit composition (1, 4, 6, 10, 15, and 17 H chains per 24 mer) were maximally loaded with iron, using ceruloplasmin and phosphate. All loaded approximately the same amount of iron and phosphate (2250 and 380 atoms, respectively). The iron and phosphate content of all ferritin, including the maximally loaded recombinant ferritin heteropolymers, fit an equation we previously reported: [Fe] = 4404 - 5.61 [Pi] (D. deSilva et al., 1993, Arch. Biochem. Biophys. 303, 451-455). These results suggest that the amount of iron and apparently the space within the core of ferritin were not related to different subunit composition.

UI MeSH Term Description Entries
D007501 Iron A metallic element with atomic symbol Fe, atomic number 26, and atomic weight 55.85. It is an essential constituent of HEMOGLOBINS; CYTOCHROMES; and IRON-BINDING PROTEINS. It plays a role in cellular redox reactions and in the transport of OXYGEN. Iron-56,Iron 56
D008099 Liver A large lobed glandular organ in the abdomen of vertebrates that is responsible for detoxification, metabolism, synthesis and storage of various substances. Livers
D009206 Myocardium The muscle tissue of the HEART. It is composed of striated, involuntary muscle cells (MYOCYTES, CARDIAC) connected to form the contractile pump to generate blood flow. Muscle, Cardiac,Muscle, Heart,Cardiac Muscle,Myocardia,Cardiac Muscles,Heart Muscle,Heart Muscles,Muscles, Cardiac,Muscles, Heart
D010710 Phosphates Inorganic salts of phosphoric acid. Inorganic Phosphate,Phosphates, Inorganic,Inorganic Phosphates,Orthophosphate,Phosphate,Phosphate, Inorganic
D011994 Recombinant Proteins Proteins prepared by recombinant DNA technology. Biosynthetic Protein,Biosynthetic Proteins,DNA Recombinant Proteins,Recombinant Protein,Proteins, Biosynthetic,Proteins, Recombinant DNA,DNA Proteins, Recombinant,Protein, Biosynthetic,Protein, Recombinant,Proteins, DNA Recombinant,Proteins, Recombinant,Recombinant DNA Proteins,Recombinant Proteins, DNA
D002499 Centrifugation, Density Gradient Separation of particles according to density by employing a gradient of varying densities. At equilibrium each particle settles in the gradient at a point equal to its density. (McGraw-Hill Dictionary of Scientific and Technical Terms, 4th ed) Centrifugations, Density Gradient,Density Gradient Centrifugation,Density Gradient Centrifugations,Gradient Centrifugation, Density,Gradient Centrifugations, Density
D002570 Ceruloplasmin A multi-copper blood FERROXIDASE involved in iron and copper homeostasis and inflammation. Caeruloplasmin,Ferroxidase,Ceruloplasmin Ferroxidase,Ceruloplasmin Oxidase,Ferroxidase I,alpha(2)-Ceruloplasmin,Ferroxidase, Ceruloplasmin,Oxidase, Ceruloplasmin
D002852 Chromatography, Ion Exchange Separation technique in which the stationary phase consists of ion exchange resins. The resins contain loosely held small ions that easily exchange places with other small ions of like charge present in solutions washed over the resins. Chromatography, Ion-Exchange,Ion-Exchange Chromatography,Chromatographies, Ion Exchange,Chromatographies, Ion-Exchange,Ion Exchange Chromatographies,Ion Exchange Chromatography,Ion-Exchange Chromatographies
D004591 Electrophoresis, Polyacrylamide Gel Electrophoresis in which a polyacrylamide gel is used as the diffusion medium. Polyacrylamide Gel Electrophoresis,SDS-PAGE,Sodium Dodecyl Sulfate-PAGE,Gel Electrophoresis, Polyacrylamide,SDS PAGE,Sodium Dodecyl Sulfate PAGE,Sodium Dodecyl Sulfate-PAGEs
D005293 Ferritins Iron-containing proteins that are widely distributed in animals, plants, and microorganisms. Their major function is to store IRON in a nontoxic bioavailable form. Each ferritin molecule consists of ferric iron in a hollow protein shell (APOFERRITINS) made of 24 subunits of various sequences depending on the species and tissue types. Basic Isoferritin,Ferritin,Isoferritin,Isoferritin, Basic

Related Publications

S H Juan, and S D Aust
May 2001, The Journal of veterinary medical science,
S H Juan, and S D Aust
May 1994, Journal of molecular biology,
S H Juan, and S D Aust
June 1978, The Journal of biological chemistry,
S H Juan, and S D Aust
July 1977, The American journal of clinical nutrition,
S H Juan, and S D Aust
July 1981, Science (New York, N.Y.),
S H Juan, and S D Aust
July 1956, Bulletin de la Societe de chimie biologique,
Copied contents to your clipboard!