Effects of long-term storage at -90 degrees C of bone marrow and PBPC on cell recovery, viability, and clonogenic potential. 1998

J Ayello, and M Semidei-Pomales, and R Preti, and C Hesdorffer, and R F Reiss
Department of Pathology, Columbia-Presbyterian Medical Center, New York, NY 10032, USA.

Autologous BM and PB HPC are usually stored from weeks to months until reinfusion after myeloablative chemotherapy. HPC have been stored for up to 16 months at -90 degrees C, using a mixture of 5% DMSO, 6% hydroxyethyl starch (HES), and 4% HSA as a cryoprotectant. Long-term storage (LTS) has usually entailed rate-controlled freezing using 10% DMSO and preservation in liquid nitrogen. The effects of LTS at -90 degrees C on the in vitro cell recovery, viability, and colony-forming unit-granulocyte macrophage (CFU-GM) clonogenic potential of autologous HPC that were not transplanted was studied. Sixteen BM and sixteen PB HPC had been cryopreserved for a median of 53 months (range 27-71) and 35 months (range 26-78), respectively. Samples of frozen HPC were thawed after 48 h, and the nucleated cell count, viability by trypan blue exclusion, and culture for CFU-GM were obtained. Following LTS, the cells were thawed and examined using the same assays. No difference in the median percentage recovery of nucleated cells was found in either the BM or PB HPC between the samples stored for 48 h and after LTS (5.73 x 10(9) versus 5.61 x 10(9) and 6.20 x 10(9) versus 5.78 x 10(9), respectively). In addition, no difference in median percentage viability was found in either the BM or PB HPC sampled at 48 h and at the end of LTS (75% versus 74% and 75% versus 76%, respectively). Finally, the median number of CFU-GM cultured from BM HPC at 48 h was 2.41 x 10(5) (range 0.33-11.01 x 10(5)) and at the end of LTS was 1.93 x 10(5) (range 0.32-10.55), representing a median recovery of 93% (range 19%-308%). Similarly, the median number of CFU-GM cultured from PB HPC was 1.66 x 10(5) (range 0-50.57) and at the end of LTS was 0.93 x 10(5) (range 0-44.9), representing a median recovery of 80% (range 36%-165%). This difference in percentage recovery was not significant (p = 0.514). There was poor correlation between the number of nucleated cells harvested and the percentage recovery of nucleated cells, cell viability, or CFU-GM for either the BM or PB HPC. Similarly, there was poor correlation between the number of CFU-GM in the harvest and their percentage recovery following LTS for both BM and PB HPC. Finally, there was poor correlation between the storage time of the BM or PB HPC and the percentage recovery of nucleated cells, cell viability, and CFU-GM. These data suggest that LTS of HPC at -90 degrees C is not associated with decreased recovery of nucleated cells or in vitro viability and is associated with only a modest decrease in clonogenic potential. This indicates that storage of HPC at -90 degrees C for periods in excess of 3 years is possible.

UI MeSH Term Description Entries
D001793 Blood Preservation The process by which blood or its components are kept viable outside of the organism from which they are derived (i.e., kept from decay by means of a chemical agent, cooling, or a fluid substitute that mimics the natural state within the organism). Blood Preservations,Preservation, Blood,Preservations, Blood
D001853 Bone Marrow The soft tissue filling the cavities of bones. Bone marrow exists in two types, yellow and red. Yellow marrow is found in the large cavities of large bones and consists mostly of fat cells and a few primitive blood cells. Red marrow is a hematopoietic tissue and is the site of production of erythrocytes and granular leukocytes. Bone marrow is made up of a framework of connective tissue containing branching fibers with the frame being filled with marrow cells. Marrow,Red Marrow,Yellow Marrow,Marrow, Bone,Marrow, Red,Marrow, Yellow
D002470 Cell Survival The span of viability of a cell characterized by the capacity to perform certain functions such as metabolism, growth, reproduction, some form of responsiveness, and adaptability. Cell Viability,Cell Viabilities,Survival, Cell,Viabilities, Cell,Viability, Cell
D003114 Colony-Forming Units Assay A cytologic technique for measuring the functional capacity of stem cells by assaying their activity. Clonogenic Cell Assay,Stem Cell Assay,Clonogenic Cell Assays,Colony Forming Units Assays,Colony-Forming Units Assays,Stem Cell Assays,Assay, Clonogenic Cell,Assay, Colony-Forming Units,Assay, Stem Cell,Assays, Clonogenic Cell,Assays, Colony-Forming Units,Assays, Stem Cell,Colony Forming Units Assay
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D013997 Time Factors Elements of limited time intervals, contributing to particular results or situations. Time Series,Factor, Time,Time Factor
D015925 Cryopreservation Preservation of cells, tissues, organs, or embryos by freezing. In histological preparations, cryopreservation or cryofixation is used to maintain the existing form, structure, and chemical composition of all the constituent elements of the specimens. Cryofixation,Cryonic Suspension,Cryonic Suspensions,Suspension, Cryonic
D016026 Bone Marrow Transplantation The transference of BONE MARROW from one human or animal to another for a variety of purposes including HEMATOPOIETIC STEM CELL TRANSPLANTATION or MESENCHYMAL STEM CELL TRANSPLANTATION. Bone Marrow Cell Transplantation,Grafting, Bone Marrow,Transplantation, Bone Marrow,Transplantation, Bone Marrow Cell,Bone Marrow Grafting
D018380 Hematopoietic Stem Cell Transplantation Transfer of HEMATOPOIETIC STEM CELLS from BONE MARROW or BLOOD between individuals within the same species (TRANSPLANTATION, HOMOLOGOUS) or transfer within the same individual (TRANSPLANTATION, AUTOLOGOUS). Hematopoietic stem cell transplantation has been used as an alternative to BONE MARROW TRANSPLANTATION in the treatment of a variety of neoplasms. Stem Cell Transplantation, Hematopoietic,Transplantation, Hematopoietic Stem Cell

Related Publications

J Ayello, and M Semidei-Pomales, and R Preti, and C Hesdorffer, and R F Reiss
August 1985, Experimental hematology,
J Ayello, and M Semidei-Pomales, and R Preti, and C Hesdorffer, and R F Reiss
January 1975, Acta haematologica Polonica,
J Ayello, and M Semidei-Pomales, and R Preti, and C Hesdorffer, and R F Reiss
October 1994, Der Ophthalmologe : Zeitschrift der Deutschen Ophthalmologischen Gesellschaft,
J Ayello, and M Semidei-Pomales, and R Preti, and C Hesdorffer, and R F Reiss
January 1970, Folia haematologica (Leipzig, Germany : 1928),
J Ayello, and M Semidei-Pomales, and R Preti, and C Hesdorffer, and R F Reiss
February 1986, Journal of in vitro fertilization and embryo transfer : IVF,
J Ayello, and M Semidei-Pomales, and R Preti, and C Hesdorffer, and R F Reiss
February 1971, Cryobiology,
J Ayello, and M Semidei-Pomales, and R Preti, and C Hesdorffer, and R F Reiss
January 2001, British journal of biomedical science,
J Ayello, and M Semidei-Pomales, and R Preti, and C Hesdorffer, and R F Reiss
March 1998, Polski merkuriusz lekarski : organ Polskiego Towarzystwa Lekarskiego,
J Ayello, and M Semidei-Pomales, and R Preti, and C Hesdorffer, and R F Reiss
June 1988, Annals of tropical medicine and parasitology,
J Ayello, and M Semidei-Pomales, and R Preti, and C Hesdorffer, and R F Reiss
January 1980, Medical laboratory sciences,
Copied contents to your clipboard!