Role of eicosanoids in renal angiotensin II vasoconstriction during nitric oxide blockade. 1998

C Muller, and K Endlich, and J J Helwig
Pharmacology Department, University Louis Pasteur School of Medicine, Strasbourg, France.

Nitric oxide (NO) buffers the effect of vasoconstrictors currently active in the renovascular system. Enhancement of the angiotensin II (Ang II)-induced vasoconstriction during NO blockade comprises both AT2-sensitive potentiation, decreasing the half maximal vasoconstriction (EC50) value to the subnanomolar concentration range, and augmentation, increasing the maximal effect (Emax) value in the isolated perfused rat kidney. In this study, we examine whether constrictory prostanoids are involved in Ang II subtype receptor (AT2)-sensitive potentiation of the Ang II effect during NO blockade. Thus, Ang II-induced vasoconstriction (0.1 or 10 nM Ang II) was measured in six series of constant-flow perfused isolated rat kidneys in the presence of indomethacin under control conditions, during NO inhibition, and during combined inhibition of NO and all arachidonic pathways by eicosatetraynoic acid (ETYA), an analog of arachidonic acid. The vasoconstriction elicited by 10 nM Ang II, which is the maximal response, increased about threefold during NO inhibition compared with control. This augmentation was not affected by ETYA. In contrast, the vasoconstriction elicited by 0.1 nM Ang II increased about 20-fold during NO inhibition, reflecting mainly potentiation of the Ang II effect. This increase was abrogated by ETYA. We conclude that vasoconstrictor eicosanoids, which are suppressed by endogenous NO, mediate AT2-sensitive potentiation of the Ang II-induced vasoconstriction in the rat kidney.

UI MeSH Term Description Entries
D007668 Kidney Body organ that filters blood for the secretion of URINE and that regulates ion concentrations. Kidneys
D008297 Male Males
D009569 Nitric Oxide A free radical gas produced endogenously by a variety of mammalian cells, synthesized from ARGININE by NITRIC OXIDE SYNTHASE. Nitric oxide is one of the ENDOTHELIUM-DEPENDENT RELAXING FACTORS released by the vascular endothelium and mediates VASODILATION. It also inhibits platelet aggregation, induces disaggregation of aggregated platelets, and inhibits platelet adhesion to the vascular endothelium. Nitric oxide activates cytosolic GUANYLATE CYCLASE and thus elevates intracellular levels of CYCLIC GMP. Endogenous Nitrate Vasodilator,Mononitrogen Monoxide,Nitric Oxide, Endothelium-Derived,Nitrogen Monoxide,Endothelium-Derived Nitric Oxide,Monoxide, Mononitrogen,Monoxide, Nitrogen,Nitrate Vasodilator, Endogenous,Nitric Oxide, Endothelium Derived,Oxide, Nitric,Vasodilator, Endogenous Nitrate
D009924 Organ Culture Techniques A technique for maintenance or growth of animal organs in vitro. It refers to three-dimensional cultures of undisaggregated tissue retaining some or all of the histological features of the tissue in vivo. (Freshney, Culture of Animal Cells, 3d ed, p1) Organ Culture,Culture Technique, Organ,Culture Techniques, Organ,Organ Culture Technique,Organ Cultures
D011453 Prostaglandins A group of compounds derived from unsaturated 20-carbon fatty acids, primarily arachidonic acid, via the cyclooxygenase pathway. They are extremely potent mediators of a diverse group of physiological processes. Prostaglandin,Prostanoid,Prostanoids
D012079 Renal Circulation The circulation of the BLOOD through the vessels of the KIDNEY. Kidney Circulation,Renal Blood Flow,Circulation, Kidney,Circulation, Renal,Blood Flow, Renal,Flow, Renal Blood
D004791 Enzyme Inhibitors Compounds or agents that combine with an enzyme in such a manner as to prevent the normal substrate-enzyme combination and the catalytic reaction. Enzyme Inhibitor,Inhibitor, Enzyme,Inhibitors, Enzyme
D000804 Angiotensin II An octapeptide that is a potent but labile vasoconstrictor. It is produced from angiotensin I after the removal of two amino acids at the C-terminal by ANGIOTENSIN CONVERTING ENZYME. The amino acid in position 5 varies in different species. To block VASOCONSTRICTION and HYPERTENSION effect of angiotensin II, patients are often treated with ACE INHIBITORS or with ANGIOTENSIN II TYPE 1 RECEPTOR BLOCKERS. Angiotensin II, Ile(5)-,Angiotensin II, Val(5)-,5-L-Isoleucine Angiotensin II,ANG-(1-8)Octapeptide,Angiotensin II, Isoleucine(5)-,Angiotensin II, Valine(5)-,Angiotensin-(1-8) Octapeptide,Isoleucine(5)-Angiotensin,Isoleucyl(5)-Angiotensin II,Valyl(5)-Angiotensin II,5 L Isoleucine Angiotensin II,Angiotensin II, 5-L-Isoleucine
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D014655 Vascular Resistance The force that opposes the flow of BLOOD through a vascular bed. It is equal to the difference in BLOOD PRESSURE across the vascular bed divided by the CARDIAC OUTPUT. Peripheral Resistance,Total Peripheral Resistance,Pulmonary Vascular Resistance,Systemic Vascular Resistance,Peripheral Resistance, Total,Resistance, Peripheral,Resistance, Pulmonary Vascular,Resistance, Systemic Vascular,Resistance, Total Peripheral,Resistance, Vascular,Vascular Resistance, Pulmonary,Vascular Resistance, Systemic

Related Publications

C Muller, and K Endlich, and J J Helwig
June 1993, Hypertension (Dallas, Tex. : 1979),
C Muller, and K Endlich, and J J Helwig
May 1998, Journal of hypertension,
C Muller, and K Endlich, and J J Helwig
January 1996, Blood pressure. Supplement,
C Muller, and K Endlich, and J J Helwig
November 2001, Hypertension research : official journal of the Japanese Society of Hypertension,
C Muller, and K Endlich, and J J Helwig
September 2002, Circulation research,
C Muller, and K Endlich, and J J Helwig
February 2002, Hypertension (Dallas, Tex. : 1979),
C Muller, and K Endlich, and J J Helwig
September 1995, European journal of pharmacology,
C Muller, and K Endlich, and J J Helwig
March 1996, The American journal of physiology,
C Muller, and K Endlich, and J J Helwig
October 2001, European journal of pharmacology,
C Muller, and K Endlich, and J J Helwig
June 1996, The Journal of pharmacology and experimental therapeutics,
Copied contents to your clipboard!