Delta T 14/Delta D 15 Azotobacter vinelandii ferredoxin I: creation of a new CysXXCysXXCys motif that ligates a [4Fe-4S] cluster. 1998

M A Kemper, and H S Gao-Sheridan, and B Shen, and J L Duff, and G J Tilley, and F A Armstrong, and B K Burgess
Department of Molecular Biology and Biochemistry, University of California, Irvine 92697-3900, USA.

In clostridial-type ferredoxins, each of the two [4Fe-4S]2+/+ clusters receives three of its four ligands from a CysXXCysXXCys motif. Azotobacter vinelandii ferredoxin I (AvFdI) is a seven-iron ferredoxin that contains one [4Fe-4S]2+/+ cluster and one [3Fe-4S]+/0 cluster. During the evolution of the 7Fe azotobacter-type ferredoxins from the 8Fe clostridial-type ferredoxins, one of the two motifs present changed to a CysXXCysXXXXCys motif, resulting in the inability to form a 4Fe cluster and the appearance of a 3Fe cluster in that position. In a previous study, we were unsuccessful in using structure as a guide in designing a 4Fe cluster in the 3Fe cluster position of AvFdI. In this study, we have reversed part of the evolutionary process by deleting two residues between the second and third cysteines. UV/Vis, CD, and EPR spectroscopies and direct electrochemical studies of the purified protein reveal that this DeltaT14/DeltaD15 FdI variant is an 8Fe protein containing two [4Fe-4S]2+/+ clusters with reduction potentials of -466 and -612 mV versus SHE. Whole-cell EPR shows that the protein is present as an 8Fe protein in vivo. These data strongly suggest that it is the sequence motif rather than the exact sequence or the structure that is critical for the assembly of a 4Fe cluster in that region of the protein. The new oxygen-sensitive 4Fe cluster was converted in partial yield to a 3Fe cluster. In known ferredoxins and enzymes that contain reversibly interconvertible [4Fe-4S]2+/+ and [3Fe-4S]+/0 clusters, the 3Fe form always has a reduction potential ca. 200 mV more positive than the 4Fe cluster in the same position. In contrast, for DeltaT14/DeltaD15 FdI, the 3Fe and 4Fe clusters in the same location have extremely similar reduction potentials.

UI MeSH Term Description Entries
D007501 Iron A metallic element with atomic symbol Fe, atomic number 26, and atomic weight 55.85. It is an essential constituent of HEMOGLOBINS; CYTOCHROMES; and IRON-BINDING PROTEINS. It plays a role in cellular redox reactions and in the transport of OXYGEN. Iron-56,Iron 56
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D002942 Circular Dichroism A change from planar to elliptic polarization when an initially plane-polarized light wave traverses an optically active medium. (McGraw-Hill Dictionary of Scientific and Technical Terms, 4th ed) Circular Dichroism, Vibrational,Dichroism, Circular,Vibrational Circular Dichroism
D003545 Cysteine A thiol-containing non-essential amino acid that is oxidized to form CYSTINE. Cysteine Hydrochloride,Half-Cystine,L-Cysteine,Zinc Cysteinate,Half Cystine,L Cysteine
D004563 Electrochemistry The study of chemical changes resulting from electrical action and electrical activity resulting from chemical changes. Electrochemistries
D004578 Electron Spin Resonance Spectroscopy A technique applicable to the wide variety of substances which exhibit paramagnetism because of the magnetic moments of unpaired electrons. The spectra are useful for detection and identification, for determination of electron structure, for study of interactions between molecules, and for measurement of nuclear spins and moments. (From McGraw-Hill Encyclopedia of Science and Technology, 7th edition) Electron nuclear double resonance (ENDOR) spectroscopy is a variant of the technique which can give enhanced resolution. Electron spin resonance analysis can now be used in vivo, including imaging applications such as MAGNETIC RESONANCE IMAGING. ENDOR,Electron Nuclear Double Resonance,Electron Paramagnetic Resonance,Paramagnetic Resonance,Electron Spin Resonance,Paramagnetic Resonance, Electron,Resonance, Electron Paramagnetic,Resonance, Electron Spin,Resonance, Paramagnetic
D004579 Electron Transport The process by which ELECTRONS are transported from a reduced substrate to molecular OXYGEN. (From Bennington, Saunders Dictionary and Encyclopedia of Laboratory Medicine and Technology, 1984, p270) Respiratory Chain,Chain, Respiratory,Chains, Respiratory,Respiratory Chains,Transport, Electron
D005288 Ferredoxins Iron-containing proteins that transfer electrons, usually at a low potential, to flavoproteins; the iron is not present as in heme. (McGraw-Hill Dictionary of Scientific and Technical Terms, 5th ed) Ferredoxin,Ferredoxin I,Ferredoxin II,Ferredoxin III
D000595 Amino Acid Sequence The order of amino acids as they occur in a polypeptide chain. This is referred to as the primary structure of proteins. It is of fundamental importance in determining PROTEIN CONFORMATION. Protein Structure, Primary,Amino Acid Sequences,Sequence, Amino Acid,Sequences, Amino Acid,Primary Protein Structure,Primary Protein Structures,Protein Structures, Primary,Structure, Primary Protein,Structures, Primary Protein
D001224 Aspartic Acid One of the non-essential amino acids commonly occurring in the L-form. It is found in animals and plants, especially in sugar cane and sugar beets. It may be a neurotransmitter. (+-)-Aspartic Acid,(R,S)-Aspartic Acid,Ammonium Aspartate,Aspartate,Aspartate Magnesium Hydrochloride,Aspartic Acid, Ammonium Salt,Aspartic Acid, Calcium Salt,Aspartic Acid, Dipotassium Salt,Aspartic Acid, Disodium Salt,Aspartic Acid, Hydrobromide,Aspartic Acid, Hydrochloride,Aspartic Acid, Magnesium (1:1) Salt, Hydrochloride, Trihydrate,Aspartic Acid, Magnesium (2:1) Salt,Aspartic Acid, Magnesium-Potassium (2:1:2) Salt,Aspartic Acid, Monopotassium Salt,Aspartic Acid, Monosodium Salt,Aspartic Acid, Potassium Salt,Aspartic Acid, Sodium Salt,Calcium Aspartate,Dipotassium Aspartate,Disodium Aspartate,L-Aspartate,L-Aspartic Acid,Magnesiocard,Magnesium Aspartate,Mg-5-Longoral,Monopotassium Aspartate,Monosodium Aspartate,Potassium Aspartate,Sodium Aspartate,Aspartate, Ammonium,Aspartate, Calcium,Aspartate, Dipotassium,Aspartate, Disodium,Aspartate, Magnesium,Aspartate, Monopotassium,Aspartate, Monosodium,Aspartate, Potassium,Aspartate, Sodium,L Aspartate,L Aspartic Acid

Related Publications

M A Kemper, and H S Gao-Sheridan, and B Shen, and J L Duff, and G J Tilley, and F A Armstrong, and B K Burgess
September 1985, Proceedings of the National Academy of Sciences of the United States of America,
M A Kemper, and H S Gao-Sheridan, and B Shen, and J L Duff, and G J Tilley, and F A Armstrong, and B K Burgess
December 1999, The Journal of biological chemistry,
M A Kemper, and H S Gao-Sheridan, and B Shen, and J L Duff, and G J Tilley, and F A Armstrong, and B K Burgess
March 1994, The Journal of biological chemistry,
M A Kemper, and H S Gao-Sheridan, and B Shen, and J L Duff, and G J Tilley, and F A Armstrong, and B K Burgess
November 1991, The Journal of biological chemistry,
M A Kemper, and H S Gao-Sheridan, and B Shen, and J L Duff, and G J Tilley, and F A Armstrong, and B K Burgess
November 2000, The Journal of biological chemistry,
M A Kemper, and H S Gao-Sheridan, and B Shen, and J L Duff, and G J Tilley, and F A Armstrong, and B K Burgess
December 1993, The Journal of biological chemistry,
M A Kemper, and H S Gao-Sheridan, and B Shen, and J L Duff, and G J Tilley, and F A Armstrong, and B K Burgess
November 1978, Journal of bacteriology,
M A Kemper, and H S Gao-Sheridan, and B Shen, and J L Duff, and G J Tilley, and F A Armstrong, and B K Burgess
February 2002, The Journal of biological chemistry,
M A Kemper, and H S Gao-Sheridan, and B Shen, and J L Duff, and G J Tilley, and F A Armstrong, and B K Burgess
October 1995, Proceedings of the National Academy of Sciences of the United States of America,
M A Kemper, and H S Gao-Sheridan, and B Shen, and J L Duff, and G J Tilley, and F A Armstrong, and B K Burgess
July 1998, Biochemistry,
Copied contents to your clipboard!