Differential nucleosome positioning on Xenopus oocyte and somatic 5 S RNA genes determines both TFIIIA and H1 binding: a mechanism for selective H1 repression. 1998

G Panetta, and M Buttinelli, and A Flaus, and T J Richmond, and D Rhodes
MRC Laboratory of Molecular Biology, Hills Road, Cambridge, CB2 2QH, England.

In Xenopus somatic cells histone H1 effects the transcriptional repression of oocyte type 5 S RNA genes, without altering the transcription of the somatic type 5 S RNA genes. Using an unambiguous nucleosome mapping method we find substantial differences between the multiple in vitro nucleosome positions on the two types of genes. These nucleosome positions determine both transcription factor and H1 binding, allowing TFIIIA to bind more efficiently to nucleosomes containing the somatic 5 S RNA gene than to nucleosomes on the oocyte 5 S RNA gene. Significantly, in a binding competition between TFIIIA and H1, TFIIIA preferentially binds to the somatic nucleosome whereas H1 preferentially binds to the oocyte nucleosome, excluding TFIIIA binding. These results strongly suggest that nucleosome positioning plays a key role in the regulation of transcription of 5 S RNA genes and provide a molecular mechanism for the selective repression of the oocyte 5 S RNA genes by H1.

UI MeSH Term Description Entries
D009707 Nucleosomes The repeating structural units of chromatin, each consisting of approximately 200 base pairs of DNA wound around a protein core. This core is composed of the histones H2A, H2B, H3, and H4. Dinucleosomes,Polynucleosomes,Dinucleosome,Nucleosome,Polynucleosome
D009865 Oocytes Female germ cells derived from OOGONIA and termed OOCYTES when they enter MEIOSIS. The primary oocytes begin meiosis but are arrested at the diplotene state until OVULATION at PUBERTY to give rise to haploid secondary oocytes or ova (OVUM). Ovocytes,Oocyte,Ovocyte
D004268 DNA-Binding Proteins Proteins which bind to DNA. The family includes proteins which bind to both double- and single-stranded DNA and also includes specific DNA binding proteins in serum which can be used as markers for malignant diseases. DNA Helix Destabilizing Proteins,DNA-Binding Protein,Single-Stranded DNA Binding Proteins,DNA Binding Protein,DNA Single-Stranded Binding Protein,SS DNA BP,Single-Stranded DNA-Binding Protein,Binding Protein, DNA,DNA Binding Proteins,DNA Single Stranded Binding Protein,DNA-Binding Protein, Single-Stranded,Protein, DNA-Binding,Single Stranded DNA Binding Protein,Single Stranded DNA Binding Proteins
D005260 Female Females
D005786 Gene Expression Regulation Any of the processes by which nuclear, cytoplasmic, or intercellular factors influence the differential control (induction or repression) of gene action at the level of transcription or translation. Gene Action Regulation,Regulation of Gene Expression,Expression Regulation, Gene,Regulation, Gene Action,Regulation, Gene Expression
D006657 Histones Small chromosomal proteins (approx 12-20 kD) possessing an open, unfolded structure and attached to the DNA in cell nuclei by ionic linkages. Classification into the various types (designated histone I, histone II, etc.) is based on the relative amounts of arginine and lysine in each. Histone,Histone H1,Histone H1(s),Histone H2a,Histone H2b,Histone H3,Histone H3.3,Histone H4,Histone H5,Histone H7
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001665 Binding Sites The parts of a macromolecule that directly participate in its specific combination with another molecule. Combining Site,Binding Site,Combining Sites,Site, Binding,Site, Combining,Sites, Binding,Sites, Combining
D012341 RNA, Ribosomal, 5S Constituent of the 50S subunit of prokaryotic ribosomes containing about 120 nucleotides and 34 proteins. It is also a constituent of the 60S subunit of eukaryotic ribosomes. 5S rRNA is involved in initiation of polypeptide synthesis. 5S Ribosomal RNA,5S rRNA,RNA, 5S Ribosomal,Ribosomal RNA, 5S,rRNA, 5S
D014157 Transcription Factors Endogenous substances, usually proteins, which are effective in the initiation, stimulation, or termination of the genetic transcription process. Transcription Factor,Factor, Transcription,Factors, Transcription

Related Publications

G Panetta, and M Buttinelli, and A Flaus, and T J Richmond, and D Rhodes
December 1987, The Journal of biological chemistry,
G Panetta, and M Buttinelli, and A Flaus, and T J Richmond, and D Rhodes
March 1998, Molecular and cellular biology,
G Panetta, and M Buttinelli, and A Flaus, and T J Richmond, and D Rhodes
January 1972, Biochimie,
G Panetta, and M Buttinelli, and A Flaus, and T J Richmond, and D Rhodes
March 1996, The Journal of biological chemistry,
G Panetta, and M Buttinelli, and A Flaus, and T J Richmond, and D Rhodes
February 1988, Genes & development,
G Panetta, and M Buttinelli, and A Flaus, and T J Richmond, and D Rhodes
February 1989, The EMBO journal,
G Panetta, and M Buttinelli, and A Flaus, and T J Richmond, and D Rhodes
September 1992, The Journal of biological chemistry,
G Panetta, and M Buttinelli, and A Flaus, and T J Richmond, and D Rhodes
January 1997, Gene expression,
G Panetta, and M Buttinelli, and A Flaus, and T J Richmond, and D Rhodes
December 2014, The Journal of biological chemistry,
Copied contents to your clipboard!