Retracing the evolution of amino acid specificity in glutaminyl-tRNA synthetase. 1998

K W Hong, and M Ibba, and D Söll
Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520-8114, USA.

Molecular phylogenetic studies of glutaminyl-tRNA synthetase suggest that it has relatively recently evolved from the closely related enzyme glutamyl-tRNA synthetase. We have now attempted to retrace one of the key steps in this process by selecting glutaminyl-tRNA synthetase mutants displaying enhanced glutamic acid recognition. Mutagenesis of two residues proximal to the active site, Phe-90 and Tyr-240, was found to improve glutamic acid recognition 3-5-fold in vitro and resulted in the misacylation of tRNA(Gln) with glutamic acid. In vivo expression of the genes encoding these misacylating variants of glutaminyl-tRNA synthetase reduced cellular growth rates by 40%, probably as a result of an increase in translational error rates. These results provide the first biochemical evidence that glutaminyl-tRNA synthetase originated through duplication and consequent diversification of an ancestral glutamyl-tRNA synthetase-encoding gene.

UI MeSH Term Description Entries
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D009154 Mutation Any detectable and heritable change in the genetic material that causes a change in the GENOTYPE and which is transmitted to daughter cells and to succeeding generations. Mutations
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000595 Amino Acid Sequence The order of amino acids as they occur in a polypeptide chain. This is referred to as the primary structure of proteins. It is of fundamental importance in determining PROTEIN CONFORMATION. Protein Structure, Primary,Amino Acid Sequences,Sequence, Amino Acid,Sequences, Amino Acid,Primary Protein Structure,Primary Protein Structures,Protein Structures, Primary,Structure, Primary Protein,Structures, Primary Protein
D000604 Amino Acyl-tRNA Synthetases A subclass of enzymes that aminoacylate AMINO ACID-SPECIFIC TRANSFER RNA with their corresponding AMINO ACIDS. Amino Acyl T RNA Synthetases,Amino Acyl-tRNA Ligases,Aminoacyl Transfer RNA Synthetase,Aminoacyl-tRNA Synthetase,Transfer RNA Synthetase,tRNA Synthetase,Acyl-tRNA Ligases, Amino,Acyl-tRNA Synthetases, Amino,Amino Acyl tRNA Ligases,Amino Acyl tRNA Synthetases,Aminoacyl tRNA Synthetase,Ligases, Amino Acyl-tRNA,RNA Synthetase, Transfer,Synthetase, Aminoacyl-tRNA,Synthetase, Transfer RNA,Synthetase, tRNA,Synthetases, Amino Acyl-tRNA
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001665 Binding Sites The parts of a macromolecule that directly participate in its specific combination with another molecule. Combining Site,Binding Site,Combining Sites,Site, Binding,Site, Combining,Sites, Binding,Sites, Combining
D016297 Mutagenesis, Site-Directed Genetically engineered MUTAGENESIS at a specific site in the DNA molecule that introduces a base substitution, or an insertion or deletion. Mutagenesis, Oligonucleotide-Directed,Mutagenesis, Site-Specific,Oligonucleotide-Directed Mutagenesis,Site-Directed Mutagenesis,Site-Specific Mutagenesis,Mutageneses, Oligonucleotide-Directed,Mutageneses, Site-Directed,Mutageneses, Site-Specific,Mutagenesis, Oligonucleotide Directed,Mutagenesis, Site Directed,Mutagenesis, Site Specific,Oligonucleotide Directed Mutagenesis,Oligonucleotide-Directed Mutageneses,Site Directed Mutagenesis,Site Specific Mutagenesis,Site-Directed Mutageneses,Site-Specific Mutageneses
D016415 Sequence Alignment The arrangement of two or more amino acid or base sequences from an organism or organisms in such a way as to align areas of the sequences sharing common properties. The degree of relatedness or homology between the sequences is predicted computationally or statistically based on weights assigned to the elements aligned between the sequences. This in turn can serve as a potential indicator of the genetic relatedness between the organisms. Sequence Homology Determination,Determination, Sequence Homology,Alignment, Sequence,Alignments, Sequence,Determinations, Sequence Homology,Sequence Alignments,Sequence Homology Determinations
D018698 Glutamic Acid A non-essential amino acid naturally occurring in the L-form. Glutamic acid is the most common excitatory neurotransmitter in the CENTRAL NERVOUS SYSTEM. Aluminum L-Glutamate,Glutamate,Potassium Glutamate,D-Glutamate,Glutamic Acid, (D)-Isomer,L-Glutamate,L-Glutamic Acid,Aluminum L Glutamate,D Glutamate,Glutamate, Potassium,L Glutamate,L Glutamic Acid,L-Glutamate, Aluminum

Related Publications

K W Hong, and M Ibba, and D Söll
January 1988, Protein sequences & data analysis,
K W Hong, and M Ibba, and D Söll
October 1997, Biological chemistry,
K W Hong, and M Ibba, and D Söll
August 1998, Biochemistry,
K W Hong, and M Ibba, and D Söll
January 1982, Molekuliarnaia biologiia,
K W Hong, and M Ibba, and D Söll
February 2002, Journal of molecular biology,
K W Hong, and M Ibba, and D Söll
January 1985, Methods in enzymology,
K W Hong, and M Ibba, and D Söll
April 1998, Protein science : a publication of the Protein Society,
K W Hong, and M Ibba, and D Söll
April 1998, Structure (London, England : 1993),
Copied contents to your clipboard!