Cloning and characterization of Pros45, the Drosophila SUG1 proteasome subunit homolog. 1998

L Cheng, and N Roemer, and K A Smyth, and J Belote, and J R Nambu, and L M Schwartz
Molecular and Cellular Biology Program, University of Massachusetts, Amherst 01003, USA.

The proteasome plays essential roles in a variety of cellular processes, including degradation of the bulk of cellular proteins, degradation of short-lived proteins such as cell cycle regulators, generation of antigenic peptides, and mediating programmed cell death. One of the best characterized subunits of the 26S proteasome is encoded by the yeast gene SUG1. We report here the cloning and characterization of the Drosophila homolog of this gene, Pros45. At the protein level, Pros45 is highly conserved with respect to its homologs in a variety of taxa: it shows 74% identity to yeast Sug1; 86% to mouse m56/mSug1/FZA-B; 87% to human Trip1; and 97% to moth 18-56. Using a genomic clone as a probe for in situ hyridization to polytene chromesomes, we demonstrated that Pros45 maps to 19F, near the base of the X chromosome. Use of a pros45 cDNA clone as a probe revealed a second site of hybridization at 99CD. Pros45 mRNA is found in the unfertilized egg and in all cells of the early embryo. By the end of embryogenesis, Pros45 is expressed predominantly in the central nervous system. Targeted expression of Pros45 in a variety of different cells using the Gal4 UAS P-element system failed to generate an overt phenotype. This study provides the foundation for further examination of the role of the 26S proteasome in homeostasis and development in Drosophila.

UI MeSH Term Description Entries
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D010447 Peptide Hydrolases Hydrolases that specifically cleave the peptide bonds found in PROTEINS and PEPTIDES. Examples of sub-subclasses for this group include EXOPEPTIDASES and ENDOPEPTIDASES. Peptidase,Peptidases,Peptide Hydrolase,Protease,Proteases,Proteinase,Proteinases,Proteolytic Enzyme,Proteolytic Enzymes,Esteroproteases,Enzyme, Proteolytic,Hydrolase, Peptide
D010450 Endopeptidases A subclass of PEPTIDE HYDROLASES that catalyze the internal cleavage of PEPTIDES or PROTEINS. Endopeptidase,Peptide Peptidohydrolases
D012097 Repressor Proteins Proteins which maintain the transcriptional quiescence of specific GENES or OPERONS. Classical repressor proteins are DNA-binding proteins that are normally bound to the OPERATOR REGION of an operon, or the ENHANCER SEQUENCES of a gene until a signal occurs that causes their release. Repressor Molecules,Transcriptional Silencing Factors,Proteins, Repressor,Silencing Factors, Transcriptional
D002352 Carrier Proteins Proteins that bind or transport specific substances in the blood, within the cell, or across cell membranes. Binding Proteins,Carrier Protein,Transport Protein,Transport Proteins,Binding Protein,Protein, Carrier,Proteins, Carrier
D002874 Chromosome Mapping Any method used for determining the location of and relative distances between genes on a chromosome. Gene Mapping,Linkage Mapping,Genome Mapping,Chromosome Mappings,Gene Mappings,Genome Mappings,Linkage Mappings,Mapping, Chromosome,Mapping, Gene,Mapping, Genome,Mapping, Linkage,Mappings, Chromosome,Mappings, Gene,Mappings, Genome,Mappings, Linkage
D003001 Cloning, Molecular The insertion of recombinant DNA molecules from prokaryotic and/or eukaryotic sources into a replicating vehicle, such as a plasmid or virus vector, and the introduction of the resultant hybrid molecules into recipient cells without altering the viability of those cells. Molecular Cloning
D004331 Drosophila melanogaster A species of fruit fly frequently used in genetics because of the large size of its chromosomes. D. melanogaster,Drosophila melanogasters,melanogaster, Drosophila
D005656 Fungal Proteins Proteins found in any species of fungus. Fungal Gene Products,Fungal Gene Proteins,Fungal Peptides,Gene Products, Fungal,Yeast Proteins,Gene Proteins, Fungal,Peptides, Fungal,Proteins, Fungal
D000251 Adenosine Triphosphatases A group of enzymes which catalyze the hydrolysis of ATP. The hydrolysis reaction is usually coupled with another function such as transporting Ca(2+) across a membrane. These enzymes may be dependent on Ca(2+), Mg(2+), anions, H+, or DNA. ATPases,Adenosinetriphosphatase,ATPase,ATPase, DNA-Dependent,Adenosine Triphosphatase,DNA-Dependent ATPase,DNA-Dependent Adenosinetriphosphatases,ATPase, DNA Dependent,Adenosinetriphosphatases, DNA-Dependent,DNA Dependent ATPase,DNA Dependent Adenosinetriphosphatases,Triphosphatase, Adenosine

Related Publications

L Cheng, and N Roemer, and K A Smyth, and J Belote, and J R Nambu, and L M Schwartz
December 1994, FEBS letters,
L Cheng, and N Roemer, and K A Smyth, and J Belote, and J R Nambu, and L M Schwartz
February 1996, Nature,
L Cheng, and N Roemer, and K A Smyth, and J Belote, and J R Nambu, and L M Schwartz
April 2006, Biochemical and biophysical research communications,
L Cheng, and N Roemer, and K A Smyth, and J Belote, and J R Nambu, and L M Schwartz
November 1989, The Journal of biological chemistry,
L Cheng, and N Roemer, and K A Smyth, and J Belote, and J R Nambu, and L M Schwartz
April 2007, Biochemical and biophysical research communications,
L Cheng, and N Roemer, and K A Smyth, and J Belote, and J R Nambu, and L M Schwartz
April 1999, FEBS letters,
L Cheng, and N Roemer, and K A Smyth, and J Belote, and J R Nambu, and L M Schwartz
May 1997, Gene,
L Cheng, and N Roemer, and K A Smyth, and J Belote, and J R Nambu, and L M Schwartz
March 1997, The Journal of biological chemistry,
L Cheng, and N Roemer, and K A Smyth, and J Belote, and J R Nambu, and L M Schwartz
June 1997, Nucleic acids research,
Copied contents to your clipboard!