Identification, characterization, and chromosomal organization of the ftsZ gene from Brevibacterium lactofermentum. 1998

M P Honrubia, and F J Fernández, and J A Gil
Departamento de Ecologia, Genética y Microbiología, Facultad de Biología, Universidad de León, Spain.

The ftsZ gene was cloned from the chromosomal DNA of Brevibacterium lactofermentum by the polymerase chain reaction (PCR) using two oligonucleotides designed from two conserved regions found in most of the previously cloned and sequenced ftsZ genes from other microorganisms. ftsZ is a single-copy gene in corynebacteria and is located downstream from ftsQ and murC, indicating linkage between genes involved in peptidoglycan synthesis (mur genes) and genes involved in cell division (fts genes). The organisation of the cluster is similar to that in Streptomyces and different from those of Escherichia coli or Bacillus subtilis because ftsA is not located upstream of ftsZ. The gene was expressed in E. coli using the T7 expression system; the calculated molecular weight of the expressed protein was 50 kDa. Expression of the B. lactofermentum ftsZ gene in E. coli inhibited cell division and led to filamentation. The ftsZ gene of this organism does not complement ftsZ mutations or deletions in E. coli, when cloned on low or high-copy-number vectors.

UI MeSH Term Description Entries
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D009693 Nucleic Acid Hybridization Widely used technique which exploits the ability of complementary sequences in single-stranded DNAs or RNAs to pair with each other to form a double helix. Hybridization can take place between two complimentary DNA sequences, between a single-stranded DNA and a complementary RNA, or between two RNA sequences. The technique is used to detect and isolate specific sequences, measure homology, or define other characteristics of one or both strands. (Kendrew, Encyclopedia of Molecular Biology, 1994, p503) Genomic Hybridization,Acid Hybridization, Nucleic,Acid Hybridizations, Nucleic,Genomic Hybridizations,Hybridization, Genomic,Hybridization, Nucleic Acid,Hybridizations, Genomic,Hybridizations, Nucleic Acid,Nucleic Acid Hybridizations
D011994 Recombinant Proteins Proteins prepared by recombinant DNA technology. Biosynthetic Protein,Biosynthetic Proteins,DNA Recombinant Proteins,Recombinant Protein,Proteins, Biosynthetic,Proteins, Recombinant DNA,DNA Proteins, Recombinant,Protein, Biosynthetic,Protein, Recombinant,Proteins, DNA Recombinant,Proteins, Recombinant,Recombinant DNA Proteins,Recombinant Proteins, DNA
D001951 Brevibacterium A gram-positive organism found in dairy products, fresh and salt water, marine organisms, insects, and decaying organic matter.
D002455 Cell Division The fission of a CELL. It includes CYTOKINESIS, when the CYTOPLASM of a cell is divided, and CELL NUCLEUS DIVISION. M Phase,Cell Division Phase,Cell Divisions,Division Phase, Cell,Division, Cell,Divisions, Cell,M Phases,Phase, Cell Division,Phase, M,Phases, M
D002876 Chromosomes, Bacterial Structures within the nucleus of bacterial cells consisting of or containing DNA, which carry genetic information essential to the cell. Bacterial Chromosome,Bacterial Chromosomes,Chromosome, Bacterial
D003001 Cloning, Molecular The insertion of recombinant DNA molecules from prokaryotic and/or eukaryotic sources into a replicating vehicle, such as a plasmid or virus vector, and the introduction of the resultant hybrid molecules into recipient cells without altering the viability of those cells. Molecular Cloning
D003598 Cytoskeletal Proteins Major constituent of the cytoskeleton found in the cytoplasm of eukaryotic cells. They form a flexible framework for the cell, provide attachment points for organelles and formed bodies, and make communication between parts of the cell possible. Proteins, Cytoskeletal
D004926 Escherichia coli A species of gram-negative, facultatively anaerobic, rod-shaped bacteria (GRAM-NEGATIVE FACULTATIVELY ANAEROBIC RODS) commonly found in the lower part of the intestine of warm-blooded animals. It is usually nonpathogenic, but some strains are known to produce DIARRHEA and pyogenic infections. Pathogenic strains (virotypes) are classified by their specific pathogenic mechanisms such as toxins (ENTEROTOXIGENIC ESCHERICHIA COLI), etc. Alkalescens-Dispar Group,Bacillus coli,Bacterium coli,Bacterium coli commune,Diffusely Adherent Escherichia coli,E coli,EAggEC,Enteroaggregative Escherichia coli,Enterococcus coli,Diffusely Adherent E. coli,Enteroaggregative E. coli,Enteroinvasive E. coli,Enteroinvasive Escherichia coli
D005798 Genes, Bacterial The functional hereditary units of BACTERIA. Bacterial Gene,Bacterial Genes,Gene, Bacterial

Related Publications

M P Honrubia, and F J Fernández, and J A Gil
January 2005, Canadian journal of microbiology,
M P Honrubia, and F J Fernández, and J A Gil
April 1999, Microbiology (Reading, England),
M P Honrubia, and F J Fernández, and J A Gil
July 1994, Applied and environmental microbiology,
M P Honrubia, and F J Fernández, and J A Gil
May 2013, Applied biochemistry and biotechnology,
M P Honrubia, and F J Fernández, and J A Gil
October 1988, Nucleic acids research,
M P Honrubia, and F J Fernández, and J A Gil
June 1999, FEMS microbiology letters,
M P Honrubia, and F J Fernández, and J A Gil
March 1987, Molecular & general genetics : MGG,
M P Honrubia, and F J Fernández, and J A Gil
March 1990, Agricultural and biological chemistry,
M P Honrubia, and F J Fernández, and J A Gil
January 1996, Journal of bacteriology,
Copied contents to your clipboard!