How a protein prepares for B12 binding: structure and dynamics of the B12-binding subunit of glutamate mutase from Clostridium tetanomorphum. 1998

M Tollinger, and R Konrat, and B H Hilbert, and E N Marsh, and B Kräutler
Institute of Organic Chemistry, University of Innsbruck, Austria.

BACKGROUND Glutamate mutase is an adenosylcobamide (coenzyme B12) dependent enzyme that catalyzes the reversible rearrangement of (2S)-glutamate to (2S,3S)-3-methylaspartate. The enzyme from Clostridium tetanomorphum comprises two subunits (of 53.7 and 14.8 kDa) and in its active form appears to be an alpha 2 beta 2 tetramer. The smaller subunit, termed MutS, has been characterized as the B12-binding component. Knowledge on the structure of a B12-binding apoenzyme does not exist. RESULTS The solution structure and important dynamical aspects of MutS have been determined from a heteronuclear NMR study. The global fold of MutS in solution resembles that determined by X-ray crystallography for the B12-binding domains of Escherichia coli methionine synthase and Propionibacterium shermanii methylmalonyl CoA mutase. In these two proteins a histidine residue displaces the endogenous cobalt-coordinating ligand of the B12 cofactor. In MutS, however, the segment of the protein containing the conserved histidine residue forms part of an unstructured and mobile extended loop. CONCLUSIONS A comparison of the crystal structures of two B12-binding domains, with bound B12 cofactor, and the solution structure of the apoprotein MutS has helped to clarify the mechanism of B12 binding. The major part of MutS is preorganized for B12 binding, but the B12-binding site itself is only partially formed. Upon binding B12, important elements of the binding site appear to become structured, including an alpha helix that forms one side of the cleft accommodating the nucleotide 'tail' of the cofactor.

UI MeSH Term Description Entries
D008958 Models, Molecular Models used experimentally or theoretically to study molecular shape, electronic properties, or interactions; includes analogous molecules, computer-generated graphics, and mechanical structures. Molecular Models,Model, Molecular,Molecular Model
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D009682 Magnetic Resonance Spectroscopy Spectroscopic method of measuring the magnetic moment of elementary particles such as atomic nuclei, protons or electrons. It is employed in clinical applications such as NMR Tomography (MAGNETIC RESONANCE IMAGING). In Vivo NMR Spectroscopy,MR Spectroscopy,Magnetic Resonance,NMR Spectroscopy,NMR Spectroscopy, In Vivo,Nuclear Magnetic Resonance,Spectroscopy, Magnetic Resonance,Spectroscopy, NMR,Spectroscopy, Nuclear Magnetic Resonance,Magnetic Resonance Spectroscopies,Magnetic Resonance, Nuclear,NMR Spectroscopies,Resonance Spectroscopy, Magnetic,Resonance, Magnetic,Resonance, Nuclear Magnetic,Spectroscopies, NMR,Spectroscopy, MR
D011485 Protein Binding The process in which substances, either endogenous or exogenous, bind to proteins, peptides, enzymes, protein precursors, or allied compounds. Specific protein-binding measures are often used as assays in diagnostic assessments. Plasma Protein Binding Capacity,Binding, Protein
D011487 Protein Conformation The characteristic 3-dimensional shape of a protein, including the secondary, supersecondary (motifs), tertiary (domains) and quaternary structure of the peptide chain. PROTEIN STRUCTURE, QUATERNARY describes the conformation assumed by multimeric proteins (aggregates of more than one polypeptide chain). Conformation, Protein,Conformations, Protein,Protein Conformations
D003013 Clostridium A genus of motile or nonmotile gram-positive bacteria of the family Clostridiaceae. Many species have been identified with some being pathogenic. They occur in water, soil, and in the intestinal tract of humans and lower animals.
D003038 Cobamides Deoxyadenosinecobalamins,Vitamin B 12 Coenzymes,Vitamin B12 Coenzymes,B12 Coenzymes, Vitamin,Coenzymes, Vitamin B12
D000595 Amino Acid Sequence The order of amino acids as they occur in a polypeptide chain. This is referred to as the primary structure of proteins. It is of fundamental importance in determining PROTEIN CONFORMATION. Protein Structure, Primary,Amino Acid Sequences,Sequence, Amino Acid,Sequences, Amino Acid,Primary Protein Structure,Primary Protein Structures,Protein Structures, Primary,Structure, Primary Protein,Structures, Primary Protein
D001426 Bacterial Proteins Proteins found in any species of bacterium. Bacterial Gene Products,Bacterial Gene Proteins,Gene Products, Bacterial,Bacterial Gene Product,Bacterial Gene Protein,Bacterial Protein,Gene Product, Bacterial,Gene Protein, Bacterial,Gene Proteins, Bacterial,Protein, Bacterial,Proteins, Bacterial
D001665 Binding Sites The parts of a macromolecule that directly participate in its specific combination with another molecule. Combining Site,Binding Site,Combining Sites,Site, Binding,Site, Combining,Sites, Binding,Sites, Combining

Related Publications

M Tollinger, and R Konrat, and B H Hilbert, and E N Marsh, and B Kräutler
July 1999, European journal of biochemistry,
M Tollinger, and R Konrat, and B H Hilbert, and E N Marsh, and B Kräutler
January 1985, Methods in enzymology,
M Tollinger, and R Konrat, and B H Hilbert, and E N Marsh, and B Kräutler
December 2008, The FEBS journal,
M Tollinger, and R Konrat, and B H Hilbert, and E N Marsh, and B Kräutler
March 1993, FEBS letters,
M Tollinger, and R Konrat, and B H Hilbert, and E N Marsh, and B Kräutler
June 2010, Protein and peptide letters,
M Tollinger, and R Konrat, and B H Hilbert, and E N Marsh, and B Kräutler
February 1993, FEBS letters,
M Tollinger, and R Konrat, and B H Hilbert, and E N Marsh, and B Kräutler
August 1999, Structure (London, England : 1993),
M Tollinger, and R Konrat, and B H Hilbert, and E N Marsh, and B Kräutler
September 1992, FEBS letters,
M Tollinger, and R Konrat, and B H Hilbert, and E N Marsh, and B Kräutler
August 1994, The Journal of biological chemistry,
M Tollinger, and R Konrat, and B H Hilbert, and E N Marsh, and B Kräutler
June 1984, FEBS letters,
Copied contents to your clipboard!