Photocarcinogenesis and susceptibility to UV radiation in the v-Ha-ras transgenic Tg.AC mouse. 1998

C S Trempus, and J F Mahler, and H N Ananthaswamy, and S M Loughlin, and J E French, and R W Tennant
Laboratory of Environmental Carcinogenesis and Mutagenesis, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina 27709, USA.

The v-Ha-ras transgenic Tg.AC mouse line has proven to be a useful model for the study of chemical carcinogenic potential. We undertook experiments designed to study the effect of the physical carcinogen, UV radiation, on tumorigenesis in this mouse strain. Following a total of three exposures on alternating days to a radiation source covering a cumulative UVR exposure range of 2.6-42.6 kJ per m2, squamous papillomas developed by 4 wk after initial exposure in a dose-dependent manner. Malignancies developed within 18-30 wk following the initial UVR exposure and were all diagnosed as squamous cell carcinoma or spindle cell tumors. In contrast to other mouse stains used in photocarcinogenesis studies, few p53 mutations were found in Tg.AC malignancies upon polymerase chain reaction-single stranded conformational polymorphism analysis of exons 4-8 followed by sequencing of suspicious bands; however, all tumors analyzed by in situ hybridization expressed the v-Ha-ras transgene. Immunohistochemical analysis of UVR-exposed skin taken 24 h after the last of three exposures (13.1 kJ per m2 total UVR) showed expression of p53 in hair follicles and in interfollicular epidermis, which indicates that the gene was functional. Thus, although there are some differences between the Tg.AC and other mouse models, these results suggest that the Tg.AC mouse may be a useful model for the study of acute exposure photocarcinogenesis.

UI MeSH Term Description Entries
D008822 Mice, Transgenic Laboratory mice that have been produced from a genetically manipulated EGG or EMBRYO, MAMMALIAN. Transgenic Mice,Founder Mice, Transgenic,Mouse, Founder, Transgenic,Mouse, Transgenic,Mice, Transgenic Founder,Transgenic Founder Mice,Transgenic Mouse
D009154 Mutation Any detectable and heritable change in the genetic material that causes a change in the GENOTYPE and which is transmitted to daughter cells and to succeeding generations. Mutations
D009381 Neoplasms, Radiation-Induced Tumors, cancer or other neoplasms produced by exposure to ionizing or non-ionizing radiation. Radiation-Induced Cancer,Cancer, Radiation-Induced,Radiation-Induced Neoplasms,Cancer, Radiation Induced,Cancers, Radiation-Induced,Neoplasm, Radiation-Induced,Neoplasms, Radiation Induced,Radiation Induced Cancer,Radiation Induced Neoplasms,Radiation-Induced Cancers,Radiation-Induced Neoplasm
D010212 Papilloma A circumscribed benign epithelial tumor projecting from the surrounding surface; more precisely, a benign epithelial neoplasm consisting of villous or arborescent outgrowths of fibrovascular stroma covered by neoplastic cells. (Stedman, 25th ed) Papilloma, Squamous Cell,Papillomatosis,Papillomas,Papillomas, Squamous Cell,Papillomatoses,Squamous Cell Papilloma,Squamous Cell Papillomas
D010641 Phenotype The outward appearance of the individual. It is the product of interactions between genes, and between the GENOTYPE and the environment. Phenotypes
D011836 Radiation Tolerance The ability of some cells or tissues to survive lethal doses of IONIZING RADIATION. Tolerance depends on the species, cell type, and physical and chemical variables, including RADIATION-PROTECTIVE AGENTS and RADIATION-SENSITIZING AGENTS. Radiation Sensitivity,Radiosensitivity,Sensitivity, Radiation,Tolerance, Radiation,Radiation Sensitivities,Radiation Tolerances,Radiosensitivities,Sensitivities, Radiation,Tolerances, Radiation
D011905 Genes, ras Family of retrovirus-associated DNA sequences (ras) originally isolated from Harvey (H-ras, Ha-ras, rasH) and Kirsten (K-ras, Ki-ras, rasK) murine sarcoma viruses. Ras genes are widely conserved among animal species and sequences corresponding to both H-ras and K-ras genes have been detected in human, avian, murine, and non-vertebrate genomes. The closely related N-ras gene has been detected in human neuroblastoma and sarcoma cell lines. All genes of the family have a similar exon-intron structure and each encodes a p21 protein. Ha-ras Genes,Ki-ras Genes,N-ras Genes,c-Ha-ras Genes,c-Ki-ras Genes,c-N-ras Genes,ras Genes,v-Ha-ras Genes,v-Ki-ras Genes,H-ras Genes,H-ras Oncogenes,Ha-ras Oncogenes,K-ras Genes,K-ras Oncogenes,Ki-ras Oncogenes,N-ras Oncogenes,c-H-ras Genes,c-H-ras Proto-Oncogenes,c-Ha-ras Proto-Oncogenes,c-K-ras Genes,c-K-ras Proto-Oncogenes,c-Ki-ras Proto-Oncogenes,c-N-ras Proto-Oncogenes,ras Oncogene,v-H-ras Genes,v-H-ras Oncogenes,v-Ha-ras Oncogenes,v-K-ras Genes,v-K-ras Oncogenes,v-Ki-ras Oncogenes,Gene, Ha-ras,Gene, Ki-ras,Gene, v-Ha-ras,Gene, v-Ki-ras,Genes, Ha-ras,Genes, Ki-ras,Genes, N-ras,Genes, v-Ha-ras,Genes, v-Ki-ras,H ras Genes,H ras Oncogenes,H-ras Gene,H-ras Oncogene,Ha ras Genes,Ha ras Oncogenes,Ha-ras Gene,Ha-ras Oncogene,K ras Genes,K ras Oncogenes,K-ras Gene,K-ras Oncogene,Ki ras Genes,Ki ras Oncogenes,Ki-ras Gene,Ki-ras Oncogene,N ras Genes,N ras Oncogenes,N-ras Gene,N-ras Oncogene,c H ras Genes,c H ras Proto Oncogenes,c Ha ras Genes,c Ha ras Proto Oncogenes,c K ras Genes,c K ras Proto Oncogenes,c Ki ras Genes,c Ki ras Proto Oncogenes,c N ras Genes,c N ras Proto Oncogenes,c-H-ras Gene,c-H-ras Proto-Oncogene,c-Ha-ras Gene,c-Ha-ras Proto-Oncogene,c-K-ras Gene,c-K-ras Proto-Oncogene,c-Ki-ras Gene,c-Ki-ras Proto-Oncogene,c-N-ras Gene,c-N-ras Proto-Oncogene,ras Gene,ras Oncogenes,v H ras Genes,v H ras Oncogenes,v Ha ras Genes,v Ha ras Oncogenes,v K ras Genes,v K ras Oncogenes,v Ki ras Genes,v Ki ras Oncogenes,v-H-ras Gene,v-H-ras Oncogene,v-Ha-ras Gene,v-Ha-ras Oncogene,v-K-ras Gene,v-K-ras Oncogene,v-Ki-ras Gene,v-Ki-ras Oncogene
D004195 Disease Models, Animal Naturally-occurring or experimentally-induced animal diseases with pathological processes analogous to human diseases. Animal Disease Model,Animal Disease Models,Disease Model, Animal
D004307 Dose-Response Relationship, Radiation The relationship between the dose of administered radiation and the response of the organism or tissue to the radiation. Dose Response Relationship, Radiation,Dose-Response Relationships, Radiation,Radiation Dose-Response Relationship,Radiation Dose-Response Relationships,Relationship, Radiation Dose-Response,Relationships, Radiation Dose-Response
D005260 Female Females

Related Publications

C S Trempus, and J F Mahler, and H N Ananthaswamy, and S M Loughlin, and J E French, and R W Tennant
July 1995, Archives of oral biology,
C S Trempus, and J F Mahler, and H N Ananthaswamy, and S M Loughlin, and J E French, and R W Tennant
January 2001, Toxicologic pathology,
C S Trempus, and J F Mahler, and H N Ananthaswamy, and S M Loughlin, and J E French, and R W Tennant
August 1994, Proceedings of the National Academy of Sciences of the United States of America,
C S Trempus, and J F Mahler, and H N Ananthaswamy, and S M Loughlin, and J E French, and R W Tennant
April 2001, Carcinogenesis,
C S Trempus, and J F Mahler, and H N Ananthaswamy, and S M Loughlin, and J E French, and R W Tennant
July 1995, Cancer research,
C S Trempus, and J F Mahler, and H N Ananthaswamy, and S M Loughlin, and J E French, and R W Tennant
July 1993, Carcinogenesis,
C S Trempus, and J F Mahler, and H N Ananthaswamy, and S M Loughlin, and J E French, and R W Tennant
March 1990, Archives of dermatology,
C S Trempus, and J F Mahler, and H N Ananthaswamy, and S M Loughlin, and J E French, and R W Tennant
March 1994, Molecular carcinogenesis,
C S Trempus, and J F Mahler, and H N Ananthaswamy, and S M Loughlin, and J E French, and R W Tennant
April 1998, Molecular carcinogenesis,
C S Trempus, and J F Mahler, and H N Ananthaswamy, and S M Loughlin, and J E French, and R W Tennant
September 1997, Molecular carcinogenesis,
Copied contents to your clipboard!