Multiple roles of neural cell adhesion molecule, neural cell adhesion molecule-polysialic acid, and L1 adhesion molecules during sensory innervation of the otic epithelium in vitro. 1998

S H Hrynkow, and D K Morest, and M Bilak, and U Rutishauser
Department of Anatomy and Center for Neurological Sciences, University of Connecticut Health Center, Farmington 06030-3405, USA.

To explore the role of cell adhesion molecules in the innervation of the inner ear, antibody perturbation was used on histotypic co-cultures of the ganglionic and epithelial anlagen derived from the otocyst. When unperturbed, these tissues survived and differentiated in this culture system with outgrowth of fasciculated neuronal fibers which expressed neural cell adhesion molecule and L1. The fibers exhibited target choice and penetration, then branching and spreading within the otic epithelium as individual axons. Treatment of the co-cultures, or of the ganglionic anlagen alone, with anti-neural cell adhesion molecule or anti-L1 Fab fragments produced a defasciculation of fibers but did not affect neurite outgrowth. In the co-cultures this defasciculation was accompanied by a small increase in the number of fibers found in inappropriate tissues. However, the antibodies did not prevent fiber entry to the otic epithelium. In contrast, removal of polysialic acid from neural cell adhesion molecule with endoneuraminadase-N, while producing a similar fiber defasciculation, also increased the incidence of fibers entering the epithelium. Nevertheless, once within the target tissue, the individual fibers responded to either Fab or to desialylation by spreading out more rapidly, branching, and growing farther into the epithelium. The findings suggest that fasciculation is not essential for specific sensory fibers to seek out and penetrate the appropriate target, although it may improve their tracking efficiency. Polysialic acid on neural cell adhesion molecule appears to limit initial penetration of the target epithelium. Polysialic acid as well as neural cell adhesion molecule and L1 function are involved in fiber-target interactions that influence the arborization of sensory axons within the otic epithelium.

UI MeSH Term Description Entries
D007758 Ear, Inner The essential part of the hearing organ consists of two labyrinthine compartments: the bony labyrinthine and the membranous labyrinth. The bony labyrinth is a complex of three interconnecting cavities or spaces (COCHLEA; VESTIBULAR LABYRINTH; and SEMICIRCULAR CANALS) in the TEMPORAL BONE. Within the bony labyrinth lies the membranous labyrinth which is a complex of sacs and tubules (COCHLEAR DUCT; SACCULE AND UTRICLE; and SEMICIRCULAR DUCTS) forming a continuous space enclosed by EPITHELIUM and connective tissue. These spaces are filled with LABYRINTHINE FLUIDS of various compositions. Labyrinth,Bony Labyrinth,Ear, Internal,Inner Ear,Membranous Labyrinth,Bony Labyrinths,Ears, Inner,Ears, Internal,Inner Ears,Internal Ear,Internal Ears,Labyrinth, Bony,Labyrinth, Membranous,Labyrinths,Labyrinths, Bony,Labyrinths, Membranous,Membranous Labyrinths
D008562 Membrane Glycoproteins Glycoproteins found on the membrane or surface of cells. Cell Surface Glycoproteins,Surface Glycoproteins,Cell Surface Glycoprotein,Membrane Glycoprotein,Surface Glycoprotein,Glycoprotein, Cell Surface,Glycoprotein, Membrane,Glycoprotein, Surface,Glycoproteins, Cell Surface,Glycoproteins, Membrane,Glycoproteins, Surface,Surface Glycoprotein, Cell,Surface Glycoproteins, Cell
D009412 Nerve Fibers Slender processes of NEURONS, including the AXONS and their glial envelopes (MYELIN SHEATH). Nerve fibers conduct nerve impulses to and from the CENTRAL NERVOUS SYSTEM. Cerebellar Mossy Fibers,Mossy Fibers, Cerebellar,Cerebellar Mossy Fiber,Mossy Fiber, Cerebellar,Nerve Fiber
D009475 Neurons, Afferent Neurons which conduct NERVE IMPULSES to the CENTRAL NERVOUS SYSTEM. Afferent Neurons,Afferent Neuron,Neuron, Afferent
D002642 Chick Embryo The developmental entity of a fertilized chicken egg (ZYGOTE). The developmental process begins about 24 h before the egg is laid at the BLASTODISC, a small whitish spot on the surface of the EGG YOLK. After 21 days of incubation, the embryo is fully developed before hatching. Embryo, Chick,Chick Embryos,Embryos, Chick
D003051 Cochlea The part of the inner ear (LABYRINTH) that is concerned with hearing. It forms the anterior part of the labyrinth, as a snail-like structure that is situated almost horizontally anterior to the VESTIBULAR LABYRINTH. Cochleas
D003470 Culture Media Any liquid or solid preparation made specifically for the growth, storage, or transport of microorganisms or other types of cells. The variety of media that exist allow for the culturing of specific microorganisms and cell types, such as differential media, selective media, test media, and defined media. Solid media consist of liquid media that have been solidified with an agent such as AGAR or GELATIN. Media, Culture
D004848 Epithelium The layers of EPITHELIAL CELLS which cover the inner and outer surfaces of the cutaneous, mucus, and serous tissues and glands of the body. Mesothelium,Epithelial Tissue,Mesothelial Tissue,Epithelial Tissues,Mesothelial Tissues,Tissue, Epithelial,Tissue, Mesothelial,Tissues, Epithelial,Tissues, Mesothelial
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001369 Axons Nerve fibers that are capable of rapidly conducting impulses away from the neuron cell body. Axon

Related Publications

S H Hrynkow, and D K Morest, and M Bilak, and U Rutishauser
May 2019, Brain research,
S H Hrynkow, and D K Morest, and M Bilak, and U Rutishauser
February 1994, Journal of neuroscience research,
S H Hrynkow, and D K Morest, and M Bilak, and U Rutishauser
May 1998, The Journal of neuroscience : the official journal of the Society for Neuroscience,
S H Hrynkow, and D K Morest, and M Bilak, and U Rutishauser
March 2012, Investigative ophthalmology & visual science,
S H Hrynkow, and D K Morest, and M Bilak, and U Rutishauser
August 2011, International journal of oncology,
S H Hrynkow, and D K Morest, and M Bilak, and U Rutishauser
January 2003, Biochimie,
S H Hrynkow, and D K Morest, and M Bilak, and U Rutishauser
September 1994, The Journal of comparative neurology,
S H Hrynkow, and D K Morest, and M Bilak, and U Rutishauser
February 1992, Brain research. Developmental brain research,
S H Hrynkow, and D K Morest, and M Bilak, and U Rutishauser
July 1997, The Journal of neuroscience : the official journal of the Society for Neuroscience,
S H Hrynkow, and D K Morest, and M Bilak, and U Rutishauser
August 1991, The American journal of pathology,
Copied contents to your clipboard!