Renovascular hypertension in bradykinin B2-receptor knockout mice. 1998

P Madeddu, and A F Milia, and M B Salis, and L Gaspa, and W Gross, and A Lippoldt, and C Emanueli
From the Clinica Medica and Terapia Medica, Medical Schoo , and the Department of Animal Biology, Section of Pharmacology , University of Sassari, Sassari, Italy. madeddu@ssmain.uniss.it

We evaluated whether kinins exert a protective action against the development of two-kidney, one clip (2K1C) hypertension, a model characterized by an activated renin-angiotensin system in the ischemic kidney and increased expression of the bradykinin (BK) B2 receptor in the contralateral kidney. BK B2-receptor knockout (B2-/-), wild-type (B2+/+), and heterozygous (B2+/-) mice underwent clipping of the left renal artery, with the other kidney remaining untouched. Basal systolic blood pressure (SBP, via tail-cuff plethysmography) was higher in B2-/- mice than in B2+/- or B2+/+ mice (121+/-2 versus 113+/-2 and 109+/-1 mm Hg; P<0.05 for both comparisons). SBP did not change from basal values after sham operation, but it increased in mice that underwent clipping. The increase in SBP was greater in 2K1C B2-/- mice than in B2+/- or B2+/+ mice (28+/-2 versus 14+/-2 and 14+/-2 mm Hg, respectively, at 2 weeks; P<0.05 for both comparisons). Blockade of the BK B2 receptor by Icatibant enhanced the pressure response to clipping in B2+/+ mice (29+/-2 mm Hg at 2 weeks). Intra-arterial mean blood pressure (MBP) was higher in 2K1C than in respective sham-operated mice, with the MBP difference being higher in B2-/- mice (32 and 38 mm Hg, at 2 and 4 weeks, respectively), and higher in B2+/+ mice given Icatibant (30 and 32 mm Hg) than in B2+/+ mice without Icatibant (17 and 18 mm Hg). At 4 weeks, acute injection of an angiotensin type 1 receptor antagonist normalized the MBP of 2K1C hypertensive mice. A tachycardic response was observed 1 week after clipping in B2-/- and B2+/- mice, but this effect was delayed in B2+/+ mice. However, the HR response to clipping in B2+/+ mice was enhanced by Icatibant. Within each strain, heart weight to body weight ratio was greater in 2K1C hypertensive mice than in sham-operated control animals (B2-/-: 5.7+/-0.1 versus 5.2+/-0.1; B2+/+: 5.1+/-0.1 versus 4.5+/-0.1; P<0.01 for both comparisons). The clipped kidney weight to nonclipped kidney weight ratio was consistently reduced in mice with 2K1C hypertension. Our results indicate that kinins acting on the BK B2 receptor exert a protective action against excessive blood pressure elevation during early phases of 2K1C hypertension.

UI MeSH Term Description Entries
D006978 Hypertension, Renovascular Hypertension due to RENAL ARTERY OBSTRUCTION or compression. Hypertension, Goldblatt,Goldblatt Syndrome,Goldblatt Hypertension,Renovascular Hypertension,Syndrome, Goldblatt
D007705 Kinins A generic term used to describe a group of polypeptides with related chemical structures and pharmacological properties that are widely distributed in nature. These peptides are AUTACOIDS that act locally to produce pain, vasodilatation, increased vascular permeability, and the synthesis of prostaglandins. Thus, they comprise a subset of the large number of mediators that contribute to the inflammatory response. (From Goodman and Gilman's The Pharmacologic Basis of Therapeutics, 8th ed, p588) Kinin
D008297 Male Males
D012078 Renal Artery Obstruction Narrowing or occlusion of the RENAL ARTERY or arteries. It is due usually to ATHEROSCLEROSIS; FIBROMUSCULAR DYSPLASIA; THROMBOSIS; EMBOLISM, or external pressure. The reduced renal perfusion can lead to renovascular hypertension (HYPERTENSION, RENOVASCULAR). Renal Artery Stenosis,Obstruction, Renal Artery,Obstructions, Renal Artery,Renal Artery Obstructions,Renal Artery Stenoses,Stenoses, Renal Artery,Stenosis, Renal Artery
D001794 Blood Pressure PRESSURE of the BLOOD on the ARTERIES and other BLOOD VESSELS. Systolic Pressure,Diastolic Pressure,Pulse Pressure,Pressure, Blood,Pressure, Diastolic,Pressure, Pulse,Pressure, Systolic,Pressures, Systolic
D001835 Body Weight The mass or quantity of heaviness of an individual. It is expressed by units of pounds or kilograms. Body Weights,Weight, Body,Weights, Body
D001920 Bradykinin A nonapeptide messenger that is enzymatically produced from KALLIDIN in the blood where it is a potent but short-lived agent of arteriolar dilation and increased capillary permeability. Bradykinin is also released from MAST CELLS during asthma attacks, from gut walls as a gastrointestinal vasodilator, from damaged tissues as a pain signal, and may be a neurotransmitter. Arg-Pro-Pro-Gly-Phe-Ser-Pro-Phe-Arg,Bradykinin Acetate, (9-D-Arg)-Isomer,Bradykinin Diacetate,Bradykinin Hydrochloride,Bradykinin Triacetate,Bradykinin, (1-D-Arg)-Isomer,Bradykinin, (2-D-Pro)-Isomer,Bradykinin, (2-D-Pro-3-D-Pro-7-D-Pro)-Isomer,Bradykinin, (2-D-Pro-7-D-Pro)-Isomer,Bradykinin, (3-D-Pro)-Isomer,Bradykinin, (3-D-Pro-7-D-Pro)-Isomer,Bradykinin, (5-D-Phe)-Isomer,Bradykinin, (5-D-Phe-8-D-Phe)-Isomer,Bradykinin, (6-D-Ser)-Isomer,Bradykinin, (7-D-Pro)-Isomer,Bradykinin, (8-D-Phe)-Isomer,Bradykinin, (9-D-Arg)-Isomer,Arg Pro Pro Gly Phe Ser Pro Phe Arg
D003250 Constriction The act of constricting. Clamping,Clampings,Constrictions
D004195 Disease Models, Animal Naturally-occurring or experimentally-induced animal diseases with pathological processes analogous to human diseases. Animal Disease Model,Animal Disease Models,Disease Model, Animal
D004562 Electrocardiography Recording of the moment-to-moment electromotive forces of the HEART as projected onto various sites on the body's surface, delineated as a scalar function of time. The recording is monitored by a tracing on slow moving chart paper or by observing it on a cardioscope, which is a CATHODE RAY TUBE DISPLAY. 12-Lead ECG,12-Lead EKG,12-Lead Electrocardiography,Cardiography,ECG,EKG,Electrocardiogram,Electrocardiograph,12 Lead ECG,12 Lead EKG,12 Lead Electrocardiography,12-Lead ECGs,12-Lead EKGs,12-Lead Electrocardiographies,Cardiographies,ECG, 12-Lead,EKG, 12-Lead,Electrocardiograms,Electrocardiographies, 12-Lead,Electrocardiographs,Electrocardiography, 12-Lead

Related Publications

P Madeddu, and A F Milia, and M B Salis, and L Gaspa, and W Gross, and A Lippoldt, and C Emanueli
July 1996, Biochemical and biophysical research communications,
P Madeddu, and A F Milia, and M B Salis, and L Gaspa, and W Gross, and A Lippoldt, and C Emanueli
March 2001, Hypertension (Dallas, Tex. : 1979),
P Madeddu, and A F Milia, and M B Salis, and L Gaspa, and W Gross, and A Lippoldt, and C Emanueli
June 1996, Immunopharmacology,
P Madeddu, and A F Milia, and M B Salis, and L Gaspa, and W Gross, and A Lippoldt, and C Emanueli
December 1999, Immunopharmacology,
P Madeddu, and A F Milia, and M B Salis, and L Gaspa, and W Gross, and A Lippoldt, and C Emanueli
June 1993, Hypertension (Dallas, Tex. : 1979),
P Madeddu, and A F Milia, and M B Salis, and L Gaspa, and W Gross, and A Lippoldt, and C Emanueli
July 2006, Blood,
P Madeddu, and A F Milia, and M B Salis, and L Gaspa, and W Gross, and A Lippoldt, and C Emanueli
January 1997, Hypertension (Dallas, Tex. : 1979),
P Madeddu, and A F Milia, and M B Salis, and L Gaspa, and W Gross, and A Lippoldt, and C Emanueli
February 2016, The journals of gerontology. Series A, Biological sciences and medical sciences,
P Madeddu, and A F Milia, and M B Salis, and L Gaspa, and W Gross, and A Lippoldt, and C Emanueli
April 2005, Regulatory peptides,
P Madeddu, and A F Milia, and M B Salis, and L Gaspa, and W Gross, and A Lippoldt, and C Emanueli
April 1990, Trends in pharmacological sciences,
Copied contents to your clipboard!