The V protein of the paramyxovirus SV5 interacts with damage-specific DNA binding protein. 1998

G Y Lin, and R G Paterson, and C D Richardson, and R A Lamb
Department of Biochemistry, Molecular Biology and Cell Biology, Howard Hughes Medical Institute, Northwestern University, 2153 North Campus Drive, Evanston, Illinois, 60208-3500, USA.

The simian parainfluenza virus 5 (SV5) V/P gene encodes two proteins: V and the phosphoprotein P. The V and P proteins are amino coterminal for 164 residues, but they have unique carboxyl termini. The unique carboxyl terminus of V contains seven cysteine residues, resembles a zinc finger, and binds two atoms of zinc. In a glutathione-S-transferase (GST)-fusion protein selection of cell lysate assay, the GST-V protein was found to interact with the 127-kDa subunit (DDB1) of the damage-specific DNA binding protein (DDB) [also known as UV-damaged DNA binding protein (UV-DDB), xeroderma pigmentosum group E binding factor (XPE-BF), and the hepatitis B virus X-associated protein 1 (XAP-1)]. A reciprocal GST-DDB1 fusion protein selection assay of SV5-infected cell lysates showed that DDB1 and V interact, and it was found that V and DDB1 could be coimmunoprecipitated from SV5-infected cells or from cells expressing V and DDB1 using the vaccinia virus T7 expression system. The interaction of V and DDB1 involves the carboxyl-terminal domain of V in that either deletion of the V carboxyl-terminal domain or substitution of the cysteine residues (C189, C193, C205, C207, C210, C214, and C217) in the zinc-binding domain with alanine was able to disrupt binding to DDB1. The V proteins of the mumps virus, human parainfluenza virus 2 (hPIV2), and measles virus have also been found to interact with DDB1 in GST-fusion protein selection assays using in vitro transcribed and translated DDB1.

UI MeSH Term Description Entries
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D010750 Phosphoproteins Phosphoprotein
D011485 Protein Binding The process in which substances, either endogenous or exogenous, bind to proteins, peptides, enzymes, protein precursors, or allied compounds. Specific protein-binding measures are often used as assays in diagnostic assessments. Plasma Protein Binding Capacity,Binding, Protein
D004249 DNA Damage Injuries to DNA that introduce deviations from its normal, intact structure and which may, if left unrepaired, result in a MUTATION or a block of DNA REPLICATION. These deviations may be caused by physical or chemical agents and occur by natural or unnatural, introduced circumstances. They include the introduction of illegitimate bases during replication or by deamination or other modification of bases; the loss of a base from the DNA backbone leaving an abasic site; single-strand breaks; double strand breaks; and intrastrand (PYRIMIDINE DIMERS) or interstrand crosslinking. Damage can often be repaired (DNA REPAIR). If the damage is extensive, it can induce APOPTOSIS. DNA Injury,DNA Lesion,DNA Lesions,Genotoxic Stress,Stress, Genotoxic,Injury, DNA,DNA Injuries
D004268 DNA-Binding Proteins Proteins which bind to DNA. The family includes proteins which bind to both double- and single-stranded DNA and also includes specific DNA binding proteins in serum which can be used as markers for malignant diseases. DNA Helix Destabilizing Proteins,DNA-Binding Protein,Single-Stranded DNA Binding Proteins,DNA Binding Protein,DNA Single-Stranded Binding Protein,SS DNA BP,Single-Stranded DNA-Binding Protein,Binding Protein, DNA,DNA Binding Proteins,DNA Single Stranded Binding Protein,DNA-Binding Protein, Single-Stranded,Protein, DNA-Binding,Single Stranded DNA Binding Protein,Single Stranded DNA Binding Proteins
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000595 Amino Acid Sequence The order of amino acids as they occur in a polypeptide chain. This is referred to as the primary structure of proteins. It is of fundamental importance in determining PROTEIN CONFORMATION. Protein Structure, Primary,Amino Acid Sequences,Sequence, Amino Acid,Sequences, Amino Acid,Primary Protein Structure,Primary Protein Structures,Protein Structures, Primary,Structure, Primary Protein,Structures, Primary Protein
D014764 Viral Proteins Proteins found in any species of virus. Gene Products, Viral,Viral Gene Products,Viral Gene Proteins,Viral Protein,Protein, Viral,Proteins, Viral
D014779 Virus Replication The process of intracellular viral multiplication, consisting of the synthesis of PROTEINS; NUCLEIC ACIDS; and sometimes LIPIDS, and their assembly into a new infectious particle. Viral Replication,Replication, Viral,Replication, Virus,Replications, Viral,Replications, Virus,Viral Replications,Virus Replications
D015678 Viral Structural Proteins Viral proteins that are components of the mature assembled VIRUS PARTICLES. They may include nucleocapsid core proteins (gag proteins), enzymes packaged within the virus particle (pol proteins), and membrane components (env proteins). These do not include the proteins encoded in the VIRAL GENOME that are produced in infected cells but which are not packaged in the mature virus particle,i.e. the so called non-structural proteins (VIRAL NONSTRUCTURAL PROTEINS). Polypeptide VP1, Structural,VP(1),VP(2),VP(3),VP(6),VP(7),Viral Structural Proteins VP,Virus Structural Proteins,Proteins, Viral Structural,Proteins, Virus Structural,Structural Polypeptide VP1,Structural Proteins, Viral,Structural Proteins, Virus,VP1, Structural Polypeptide

Related Publications

G Y Lin, and R G Paterson, and C D Richardson, and R A Lamb
September 1977, Acta virologica,
G Y Lin, and R G Paterson, and C D Richardson, and R A Lamb
April 1995, Virology,
G Y Lin, and R G Paterson, and C D Richardson, and R A Lamb
October 1977, Virology,
G Y Lin, and R G Paterson, and C D Richardson, and R A Lamb
May 1995, Virology,
G Y Lin, and R G Paterson, and C D Richardson, and R A Lamb
April 2000, Virology,
G Y Lin, and R G Paterson, and C D Richardson, and R A Lamb
December 2022, Molecular biology reports,
G Y Lin, and R G Paterson, and C D Richardson, and R A Lamb
January 1985, Journal of free radicals in biology & medicine,
G Y Lin, and R G Paterson, and C D Richardson, and R A Lamb
April 1993, Nucleic acids research,
G Y Lin, and R G Paterson, and C D Richardson, and R A Lamb
September 1989, Journal of the neurological sciences,
G Y Lin, and R G Paterson, and C D Richardson, and R A Lamb
January 2023, Plant physiology,
Copied contents to your clipboard!