Alteration of fibronectin affinity during differentiation modulates the in vitro migration velocities of Hydra nematocytes. 1998

R P Stidwill, and M Christen
Department of Zoology, University of Zürich, Switzerland. stidwill@zool.unizh.ch

In the fresh water Cnidarian Hydra nematocytes differentiate from stem cells in the body column of the polyps and are functional in the tentacles to where they migrate as single cells in an amoeboid fashion. The fluorescent vital stain TROMI (tetramethyl-rhodamine-5/6-maleimide) allows to easily discriminate between cells located in the body column and cells mounted in the tentacles. The two cell populations were found to have different in vitro migration properties. These differences appear to be due largely to a differential attachment to fibronectin. Nematocytes from the tentacles show significantly lower in vitro migration velocities on isolated pieces of the organisms extracellular matrix (the mesoglea) and attach more firmly to fibronectin-coated substrates than cells from the body column. Pretreatment of the mesogleae with antibodies against the cell binding domain of fibronectin or addition of RGD-peptides results in an increase of the average migration velocity of cells from the tentacles and a decreased velocity of the cells from the body column. These findings suggest that (1) modulation of the attachment to fibronectin is decisive for the observed differential migration properties of the two cell populations and (2) the in vitro migration of nematocytes is dependent on subtle and transient interactions of cell surface receptors (most probably integrins) and fibronectin.

UI MeSH Term Description Entries
D009842 Oligopeptides Peptides composed of between two and twelve amino acids. Oligopeptide
D002448 Cell Adhesion Adherence of cells to surfaces or to other cells. Adhesion, Cell,Adhesions, Cell,Cell Adhesions
D002454 Cell Differentiation Progressive restriction of the developmental potential and increasing specialization of function that leads to the formation of specialized cells, tissues, and organs. Differentiation, Cell,Cell Differentiations,Differentiations, Cell
D002465 Cell Movement The movement of cells from one location to another. Distinguish from CYTOKINESIS which is the process of dividing the CYTOPLASM of a cell. Cell Migration,Locomotion, Cell,Migration, Cell,Motility, Cell,Movement, Cell,Cell Locomotion,Cell Motility,Cell Movements,Movements, Cell
D005109 Extracellular Matrix A meshwork-like substance found within the extracellular space and in association with the basement membrane of the cell surface. It promotes cellular proliferation and provides a supporting structure to which cells or cell lysates in culture dishes adhere. Matrix, Extracellular,Extracellular Matrices,Matrices, Extracellular
D005353 Fibronectins Glycoproteins found on the surfaces of cells, particularly in fibrillar structures. The proteins are lost or reduced when these cells undergo viral or chemical transformation. They are highly susceptible to proteolysis and are substrates for activated blood coagulation factor VIII. The forms present in plasma are called cold-insoluble globulins. Cold-Insoluble Globulins,LETS Proteins,Fibronectin,Opsonic Glycoprotein,Opsonic alpha(2)SB Glycoprotein,alpha 2-Surface Binding Glycoprotein,Cold Insoluble Globulins,Globulins, Cold-Insoluble,Glycoprotein, Opsonic,Proteins, LETS,alpha 2 Surface Binding Glycoprotein
D006829 Hydra A genus of freshwater polyps in the family Hydridae, order Hydroida, class HYDROZOA. They are of special interest because of their complex organization and because their adult organization corresponds roughly to the gastrula of higher animals. Hydras
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia

Related Publications

R P Stidwill, and M Christen
October 1969, Revue suisse de zoologie; annales de la Societe zoologique suisse et du Museum d'histoire naturelle de Geneve,
R P Stidwill, and M Christen
November 1991, The Journal of cell biology,
R P Stidwill, and M Christen
October 1982, Journal of ultrastructure research,
R P Stidwill, and M Christen
June 1981, Journal of ultrastructure research,
R P Stidwill, and M Christen
April 1981, Journal of cell science,
R P Stidwill, and M Christen
June 1984, Journal of cell science,
Copied contents to your clipboard!