T4 DNA ligase synthesizes dinucleoside polyphosphates. 1998

O Madrid, and D Martín, and E A Atencia, and A Sillero, and M A Günther Sillero
Departamento de Bioquímica, Instituto de Investigaciones Biomédicas, CSIC, Facultad de Medicina, Universidad Autónoma de Madrid, Spain.

T4 DNA ligase (EC 6.5.1.1), one of the most widely used enzymes in genetic engineering, transfers AMP from the E-AMP complex to tripolyphosphate, ADP, ATP, GTP or dATP producing p4A, Ap3A, Ap4A, Ap4G and Ap4dA, respectively. Nicked DNA competes very effectively with GTP for the synthesis of Ap4G and, conversely, tripolyphosphate (or GTP) inhibits the ligation of DNA by the ligase. As T4 DNA ligase has similar requirements for ATP as the mammalian DNA ligase(s), the latter enzyme(s) could also synthesize dinucleoside polyphosphates. The present report may be related to the recent finding that human Fhit (fragile histidine triad) protein, encoded by the FHIT putative tumor suppressor gene, is a typical dinucleoside 5',5''-P1,P3-triphosphate (Ap3A) hydrolase (EC 3.6.1.29).

UI MeSH Term Description Entries
D007700 Kinetics The rate dynamics in chemical or physical systems.
D009363 Neoplasm Proteins Proteins whose abnormal expression (gain or loss) are associated with the development, growth, or progression of NEOPLASMS. Some neoplasm proteins are tumor antigens (ANTIGENS, NEOPLASM), i.e. they induce an immune reaction to their tumor. Many neoplasm proteins have been characterized and are used as tumor markers (BIOMARKERS, TUMOR) when they are detectable in cells and body fluids as monitors for the presence or growth of tumors. Abnormal expression of ONCOGENE PROTEINS is involved in neoplastic transformation, whereas the loss of expression of TUMOR SUPPRESSOR PROTEINS is involved with the loss of growth control and progression of the neoplasm. Proteins, Neoplasm
D011088 DNA Ligases Poly(deoxyribonucleotide):poly(deoxyribonucleotide)ligases. Enzymes that catalyze the joining of preformed deoxyribonucleotides in phosphodiester linkage during genetic processes during repair of a single-stranded break in duplex DNA. The class includes both EC 6.5.1.1 (ATP) and EC 6.5.1.2 (NAD). DNA Joinases,DNA Ligase,Polydeoxyribonucleotide Ligases,Polydeoxyribonucleotide Synthetases,T4 DNA Ligase,DNA Ligase, T4,Joinases, DNA,Ligase, DNA,Ligase, T4 DNA,Ligases, DNA,Ligases, Polydeoxyribonucleotide,Synthetases, Polydeoxyribonucleotide
D011506 Proteins Linear POLYPEPTIDES that are synthesized on RIBOSOMES and may be further modified, crosslinked, cleaved, or assembled into complex proteins with several subunits. The specific sequence of AMINO ACIDS determines the shape the polypeptide will take, during PROTEIN FOLDING, and the function of the protein. Gene Products, Protein,Gene Proteins,Protein,Protein Gene Products,Proteins, Gene
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D012265 Ribonucleotides Nucleotides in which the purine or pyrimidine base is combined with ribose. (Dorland, 28th ed) Ribonucleoside Phosphates,Ribonucleotide,Phosphates, Ribonucleoside
D013379 Substrate Specificity A characteristic feature of enzyme activity in relation to the kind of substrate on which the enzyme or catalytic molecule reacts. Specificities, Substrate,Specificity, Substrate,Substrate Specificities
D015226 Dinucleoside Phosphates A group of compounds which consist of a nucleotide molecule to which an additional nucleoside is attached through the phosphate molecule(s). The nucleotide can contain any number of phosphates. Bis(5'-Nucleosidyl)Oligophosphates,Bis(5'-Nucleosidyl)Phosphates,Deoxydinucleoside Phosphates,Dinucleoside Diphosphates,Dinucleoside Monophosphates,Dinucleoside Oligophosphates,Dinucleoside Tetraphosphates,Dinucleoside Triphosphates,Bis(5'-Nucleosidyl)Tetraphosphate,Dinucleoside Polyphosphates,Diphosphates, Dinucleoside,Monophosphates, Dinucleoside,Oligophosphates, Dinucleoside,Phosphates, Deoxydinucleoside,Phosphates, Dinucleoside,Polyphosphates, Dinucleoside,Tetraphosphates, Dinucleoside,Triphosphates, Dinucleoside
D016147 Genes, Tumor Suppressor Genes that inhibit expression of the tumorigenic phenotype. They are normally involved in holding cellular growth in check. When tumor suppressor genes are inactivated or lost, a barrier to normal proliferation is removed and unregulated growth is possible. Antioncogenes,Cancer Suppressor Genes,Emerogenes,Genes, Cancer Suppressor,Genes, Growth Suppressor,Genes, Metastasis Suppressor,Growth Suppressor Genes,Metastasis Suppressor Genes,Tumor Suppressor Genes,Anti-Oncogenes,Genes, Onco-Suppressor,Oncogenes, Recessive,Tumor Suppressing Genes,Anti Oncogenes,Anti-Oncogene,Antioncogene,Cancer Suppressor Gene,Emerogene,Gene, Cancer Suppressor,Gene, Growth Suppressor,Gene, Metastasis Suppressor,Gene, Onco-Suppressor,Gene, Tumor Suppressing,Gene, Tumor Suppressor,Genes, Onco Suppressor,Genes, Tumor Suppressing,Growth Suppressor Gene,Metastasis Suppressor Gene,Onco-Suppressor Gene,Onco-Suppressor Genes,Oncogene, Recessive,Recessive Oncogene,Recessive Oncogenes,Suppressor Gene, Cancer,Suppressor Gene, Growth,Suppressor Gene, Metastasis,Suppressor Genes, Cancer,Suppressor Genes, Growth,Suppressor Genes, Metastasis,Tumor Suppressing Gene,Tumor Suppressor Gene
D017122 Bacteriophage T4 Virulent bacteriophage and type species of the genus T4-like phages, in the family MYOVIRIDAE. It infects E. coli and is the best known of the T-even phages. Its virion contains linear double-stranded DNA, terminally redundant and circularly permuted. Bacteriophage T2,Coliphage T2,Coliphage T4,Enterobacteria phage T2,Enterobacteria phage T4,Phage T2,Phage T4,T2 Phage,T4 Phage,Phage, T2,Phage, T4,Phages, T2,Phages, T4,T2 Phages,T2, Enterobacteria phage,T4 Phages

Related Publications

O Madrid, and D Martín, and E A Atencia, and A Sillero, and M A Günther Sillero
May 1999, European journal of biochemistry,
O Madrid, and D Martín, and E A Atencia, and A Sillero, and M A Günther Sillero
March 2000, European journal of biochemistry,
O Madrid, and D Martín, and E A Atencia, and A Sillero, and M A Günther Sillero
October 1990, FEBS letters,
O Madrid, and D Martín, and E A Atencia, and A Sillero, and M A Günther Sillero
November 1977, Proceedings of the National Academy of Sciences of the United States of America,
O Madrid, and D Martín, and E A Atencia, and A Sillero, and M A Günther Sillero
January 2009, Seminars in dialysis,
O Madrid, and D Martín, and E A Atencia, and A Sillero, and M A Günther Sillero
January 2003, Acta biochimica Polonica,
O Madrid, and D Martín, and E A Atencia, and A Sillero, and M A Günther Sillero
January 2000, Pharmacology & therapeutics,
O Madrid, and D Martín, and E A Atencia, and A Sillero, and M A Günther Sillero
January 2001, Postepy biochemii,
O Madrid, and D Martín, and E A Atencia, and A Sillero, and M A Günther Sillero
October 2002, Bioorganic chemistry,
O Madrid, and D Martín, and E A Atencia, and A Sillero, and M A Günther Sillero
June 2004, Bioorganic & medicinal chemistry letters,
Copied contents to your clipboard!