Contribution of the rostral fastigial nucleus to the control of orienting gaze shifts in the head-unrestrained cat. 1998

D Pélisson, and L Goffart, and A Guillaume
Espace et Action, Institut National de la Santé et de la Recherche Médicale Unité 94, Bron, France.

The implication of the caudal part of the fastigial nucleus (cFN) in the control of saccadic shifts of the visual axis is now well established. In contrast a possible involvement of the rostral part of the fastigial nuceus (rFN) remains unknown. In the current study we investigated in the head-unrestrained cat the contribution of the rFN to the control of visually triggered saccadic gaze shifts by measuring the deficits after unilateral muscimol injection in the rFN. A typical gaze dysmetria was observed: gaze saccades directed toward the inactivated side were hypermetric, whereas those with an opposite direction were hypometric. For both movement directions, gaze dysmetria was proportional to target retinal eccentricity and could be described as a modified gain in the translation of visual signals into eye and head motor commands. Correction saccades were triggered when the target remained visible and reduced the gaze fixation error to 2.7 +/- 1.3 degrees (mean +/- SD) on average. The hypermetria of ipsiversive gaze shifts resulted predominantly from a hypermetric response of the eyes, whereas the hypometria of contraversive gaze shifts resulted from hypometric responses of both eye and head. However, even in this latter case, the eye saccade was more affected than the motion of the head. As a consequence, for both directions of gaze shift the relative contributions of the eye and head to the overall gaze displacement were altered by muscimol injection. This was revealed by a decreased contribution of the head for ipsiversive gaze shifts and an increased head contribution for contraversive movements. These modifications were associated with slight changes in the delay between eye and head movement onsets. Inactivation of the rFN also affected the initiation of eye and head movements. Indeed, the latency of ipsiversive gaze and head movements decreased to 88 and 92% of normal, respectively, whereas the latency of contraversive ones increased to 149 and 145%. The deficits induced by rFN inactivation were then compared with those obtained after muscimol injection in the cFN of the same animals. Several deficits differed according to the site of injection within the fastigial nucleus (tonic orbital eye rotation, hypermetria of ipsiversive gaze shifts and fixation offset, relationship between dysmetria and latency of contraversive gaze shifts, postural deficit). In conclusion, the present study demonstrates that the rFN is involved in the initiation and the control of combined eye-head gaze shifts. In addition our findings support a functional distinction between the rFN and cFN for the control of orienting gaze shifts. This distinction is discussed with respect to the segregated fastigiofugal projections arising from the rFN and cFN.

UI MeSH Term Description Entries
D007839 Functional Laterality Behavioral manifestations of cerebral dominance in which there is preferential use and superior functioning of either the left or the right side, as in the preferred use of the right hand or right foot. Ambidexterity,Behavioral Laterality,Handedness,Laterality of Motor Control,Mirror Writing,Laterality, Behavioral,Laterality, Functional,Mirror Writings,Motor Control Laterality,Writing, Mirror,Writings, Mirror
D009118 Muscimol A neurotoxic isoxazole isolated from species of AMANITA. It is obtained by decarboxylation of IBOTENIC ACID. Muscimol is a potent agonist of GABA-A RECEPTORS and is used mainly as an experimental tool in animal and tissue studies. Agarin,Pantherine
D009474 Neurons The basic cellular units of nervous tissue. Each neuron consists of a body, an axon, and dendrites. Their purpose is to receive, conduct, and transmit impulses in the NERVOUS SYSTEM. Nerve Cells,Cell, Nerve,Cells, Nerve,Nerve Cell,Neuron
D009759 Nystagmus, Pathologic Involuntary movements of the eye that are divided into two types, jerk and pendular. Jerk nystagmus has a slow phase in one direction followed by a corrective fast phase in the opposite direction, and is usually caused by central or peripheral vestibular dysfunction. Pendular nystagmus features oscillations that are of equal velocity in both directions and this condition is often associated with visual loss early in life. (Adams et al., Principles of Neurology, 6th ed, p272) Convergence Nystagmus,Horizontal Nystagmus,Jerk Nystagmus,Pendular Nystagmus,Periodic Alternating Nystagmus,Rotary Nystagmus,See-Saw Nystagmus,Vertical Nystagmus,Conjugate Nystagmus,Dissociated Nystagmus,Fatigable Positional Nystagmus,Multidirectional Nystagmus,Non-Fatigable Positional Nystagmus,Permanent Nystagmus,Rebound Nystagmus,Retraction Nystagmus,Rotational Nystagmus,Spontaneous Ocular Nystagmus,Symptomatic Nystagmus,Temporary Nystagmus,Unidirectional Nystagmus,Non Fatigable Positional Nystagmus,Nystagmus, Conjugate,Nystagmus, Convergence,Nystagmus, Dissociated,Nystagmus, Fatigable Positional,Nystagmus, Horizontal,Nystagmus, Jerk,Nystagmus, Multidirectional,Nystagmus, Non-Fatigable Positional,Nystagmus, Pendular,Nystagmus, Periodic Alternating,Nystagmus, Permanent,Nystagmus, Rebound,Nystagmus, Retraction,Nystagmus, Rotary,Nystagmus, Rotational,Nystagmus, See-Saw,Nystagmus, Spontaneous Ocular,Nystagmus, Symptomatic,Nystagmus, Temporary,Nystagmus, Unidirectional,Nystagmus, Vertical,Ocular Nystagmus, Spontaneous,Pathologic Nystagmus,Positional Nystagmus, Non-Fatigable,See Saw Nystagmus
D011698 Pursuit, Smooth Eye movements that are slow, continuous, and conjugate and occur when a fixed object is moved slowly. Pursuits, Smooth,Smooth Pursuit,Smooth Pursuits
D011930 Reaction Time The time from the onset of a stimulus until a response is observed. Response Latency,Response Speed,Response Time,Latency, Response,Reaction Times,Response Latencies,Response Times,Speed, Response,Speeds, Response
D012149 Restraint, Physical Use of a device for the purpose of controlling movement of all or part of the body. Splinting and casting are FRACTURE FIXATION. Immobilization, Physical,Physical Restraint,Physical Immobilization,Physical Restraints,Restraints, Physical
D002415 Cats The domestic cat, Felis catus, of the carnivore family FELIDAE, comprising over 30 different breeds. The domestic cat is descended primarily from the wild cat of Africa and extreme southwestern Asia. Though probably present in towns in Palestine as long ago as 7000 years, actual domestication occurred in Egypt about 4000 years ago. (From Walker's Mammals of the World, 6th ed, p801) Felis catus,Felis domesticus,Domestic Cats,Felis domestica,Felis sylvestris catus,Cat,Cat, Domestic,Cats, Domestic,Domestic Cat
D002529 Cerebellar Nuclei Four clusters of neurons located deep within the WHITE MATTER of the CEREBELLUM, which are the nucleus dentatus, nucleus emboliformis, nucleus globosus, and nucleus fastigii. Dentate Nucleus,Nucleus Dentatus,Nucleus Emboliformis,Nucleus Fastigii,Nucleus Globosus,Amiculum of the Dentate Nucleus,Anterior Interposed Nucleus,Anterior Interpositus Nucleus,Central Nuclei,Deep Cerebellar Nuclei,Dentate Cerebellar Nucleus,Fastigial Cerebellar Nucleus,Fastigial Nucleus,Intracerebellar Nuclei,Lateral Cerebellar Nucleus,Medial Cerebellar Nucleus,Central Nucleus,Cerebellar Nuclei, Deep,Cerebellar Nucleus,Cerebellar Nucleus, Deep,Cerebellar Nucleus, Dentate,Cerebellar Nucleus, Fastigial,Cerebellar Nucleus, Lateral,Cerebellar Nucleus, Medial,Deep Cerebellar Nucleus,Emboliformis, Nucleus,Fastigii, Nucleus,Globosus, Nucleus,Interposed Nucleus, Anterior,Interpositus Nucleus, Anterior,Intracerebellar Nucleus,Nuclei, Central,Nuclei, Cerebellar,Nuclei, Deep Cerebellar,Nuclei, Intracerebellar,Nucleus Fastigius,Nucleus, Anterior Interposed,Nucleus, Anterior Interpositus,Nucleus, Central,Nucleus, Cerebellar,Nucleus, Deep Cerebellar,Nucleus, Dentate,Nucleus, Dentate Cerebellar,Nucleus, Fastigial,Nucleus, Fastigial Cerebellar,Nucleus, Intracerebellar,Nucleus, Lateral Cerebellar,Nucleus, Medial Cerebellar
D005403 Fixation, Ocular Positioning and accommodation of eyes that allows the image to be brought into place on the FOVEA CENTRALIS of each eye. Focusing, Ocular,Ocular Fixation,Eye Gaze,Eye Gazes,Gaze, Eye,Gazes, Eye,Ocular Focusing

Related Publications

D Pélisson, and L Goffart, and A Guillaume
December 2007, Journal of neurophysiology,
D Pélisson, and L Goffart, and A Guillaume
November 1994, Journal of neurophysiology,
D Pélisson, and L Goffart, and A Guillaume
May 1992, Trends in neurosciences,
D Pélisson, and L Goffart, and A Guillaume
January 2001, Vision research,
D Pélisson, and L Goffart, and A Guillaume
January 1973, Experimental neurology,
D Pélisson, and L Goffart, and A Guillaume
January 2007, Journal of neurophysiology,
D Pélisson, and L Goffart, and A Guillaume
May 1997, Journal of neurophysiology,
Copied contents to your clipboard!