Mechanisms of afterhyperpolarization in lobster olfactory receptor neurons. 1998

F S Corotto, and W C Michel
Department of Physiology, University of Utah School of Medicine, Salt Lake City 84108, USA.

In lobster olfactory receptor neurons (ORNs), depolarizing responses to odorants and current injection are accompanied by the development of an afterhyperpolarization (AHP) that likely contributes to spike-frequency adaptation and that persists for several seconds after termination of the response. A portion of the AHP can be blocked by extracellular application of 5 mM CsCl. At this concentration, CsCl specifically blocks the hyperpolarization-activated cation current (Ih) in lobster ORNs. This current is likely to be active at rest, where it provides a constant, depolarizing influence. Further depolarization deactivates Ih, thus allowing the cell to be briefly hyperpolarized when that depolarizing influence is removed, thus generating an AHP. Reactivation of Ih would terminate the AHP. The component of the AHP that could not be blocked by Cs+ (the Cs(+)-insensitive AHP) was accompanied by decreased input resistance, suggesting that this component is generated by increased conductance to an ion with an equilibrium potential more negative than the resting potential. The Cs(+)-insensitive AHP in current clamp and the underlying current in voltage clamp displayed a reversal potential of approximately -75 mV. Both EK and ECl are predicted to be in this range. Similar results were obtained with the use of a high Cl- pipette solution, although that shifted ECl from -72 mV to -13 mV. However, when EK was shifted to more positive or negative values, the reversal potential also shifted accordingly. A role for the Ca(2+)-mediated K+ current in generating the Cs(+)-independent AHP was explored by testing cells in current and voltage clamp while blocking IK(Ca) with Cs+/Co(2+)-saline. In some cells, the Cs(+)-independent AHP and its underlying current could be completely and reversibly blocked by Cs+/Co2+ saline, whereas in other cells some fraction of it remained. This indicates that the Cs(+)-independent AHP results from two K+ currents, one that requires an influx of extracellular Ca2+ and one that does not. Collectively, these findings indicate that AHPs result from three phenomena that occur when lobster ORNs are depolarized: 1) inactivation of the hyperpolarization-activated cation current, 2) activation of a Ca(2+)-mediated K+ current, and 3) activation of a K+ current that does not require influx of extracellular Ca2+. Roles of these processes in modulating the output of lobster ORNs are discussed.

UI MeSH Term Description Entries
D008121 Nephropidae Family of large marine CRUSTACEA, in the order DECAPODA. These are called clawed lobsters because they bear pincers on the first three pairs of legs. The American lobster and Cape lobster in the genus Homarus are commonly used for food. Clawed Lobsters,Homaridae,Homarus,Lobsters, Clawed,Clawed Lobster,Lobster, Clawed
D009812 Odorants The volatile portions of chemical substances perceptible by the sense of smell. Odors,Aroma,Fragrance,Scents,Aromas,Fragrances,Odor,Odorant,Scent
D011188 Potassium An element in the alkali group of metals with an atomic symbol K, atomic number 19, and atomic weight 39.10. It is the chief cation in the intracellular fluid of muscle and other cells. Potassium ion is a strong electrolyte that plays a significant role in the regulation of fluid volume and maintenance of the WATER-ELECTROLYTE BALANCE.
D002118 Calcium A basic element found in nearly all tissues. It is a member of the alkaline earth family of metals with the atomic symbol Ca, atomic number 20, and atomic weight 40. Calcium is the most abundant mineral in the body and combines with phosphorus to form calcium phosphate in the bones and teeth. It is essential for the normal functioning of nerves and muscles and plays a role in blood coagulation (as factor IV) and in many enzymatic processes. Coagulation Factor IV,Factor IV,Blood Coagulation Factor IV,Calcium-40,Calcium 40,Factor IV, Coagulation
D002586 Cesium A member of the alkali metals. It has an atomic symbol Cs, atomic number 55, and atomic weight 132.91. Cesium has many industrial applications, including the construction of atomic clocks based on its atomic vibrational frequency. Caesium,Caesium-133,Cesium-133,Caesium 133,Cesium 133
D002712 Chlorides Inorganic compounds derived from hydrochloric acid that contain the Cl- ion. Chloride,Chloride Ion Level,Ion Level, Chloride,Level, Chloride Ion
D000200 Action Potentials Abrupt changes in the membrane potential that sweep along the CELL MEMBRANE of excitable cells in response to excitation stimuli. Spike Potentials,Nerve Impulses,Action Potential,Impulse, Nerve,Impulses, Nerve,Nerve Impulse,Potential, Action,Potential, Spike,Potentials, Action,Potentials, Spike,Spike Potential
D000222 Adaptation, Physiological The non-genetic biological changes of an organism in response to challenges in its ENVIRONMENT. Adaptation, Physiologic,Adaptations, Physiologic,Adaptations, Physiological,Adaptive Plasticity,Phenotypic Plasticity,Physiological Adaptation,Physiologic Adaptation,Physiologic Adaptations,Physiological Adaptations,Plasticity, Adaptive,Plasticity, Phenotypic
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D012903 Smell The ability to detect scents or odors, such as the function of OLFACTORY RECEPTOR NEURONS. Olfaction,Sense of Smell,Smell Sense

Related Publications

F S Corotto, and W C Michel
May 1997, Journal of neurophysiology,
F S Corotto, and W C Michel
February 2005, Chemical senses,
F S Corotto, and W C Michel
April 2010, Journal of neurochemistry,
F S Corotto, and W C Michel
December 1989, The Journal of general physiology,
F S Corotto, and W C Michel
January 1993, Journal of comparative physiology. A, Sensory, neural, and behavioral physiology,
F S Corotto, and W C Michel
January 1991, Tissue & cell,
F S Corotto, and W C Michel
July 1999, Journal of neurochemistry,
F S Corotto, and W C Michel
October 1989, Proceedings of the National Academy of Sciences of the United States of America,
F S Corotto, and W C Michel
March 1998, Journal of neurophysiology,
Copied contents to your clipboard!