Ion-RNA interactions in the RNA pseudoknot of a ribosomal frameshifting site: molecular modeling studies. 1998

S Y Le, and J H Chen, and N Pattabiraman, and J V Maizel
Laboratory of Experimental and Computational Biology, DBS, FCRDC, National Cancer Institute, NIH, Frederick, MD 21701, USA. shuyun@orleans.ncifcrf.gov

The three-dimensional (3-D) structure of a RNA pseudoknot that causes the efficient ribosomal frameshifting in the gag-pro region of mouse mammary tumor virus (MMTV) has been determined recently by nuclear magnetic resonance (NMR) studies. But since the structure refinement in the studies did not use metal ions and waters, it is not clear how metal ions participate in the stabilization of the pseudoknot, and what kind of ion-RNA interactions dominate in the tertiary contacts for the RNA pseudoknotting. Based on the reported structure data of the pseudoknot VPK of MMTV, we gradually refined the structure by restrained molecular dynamics (MD) using NMR distance restraints. Restrained MD simulation of the RNA pseudoknot was performed with sodium ions and water molecules. Our results are in good agreement with known NMR data and delineate the importance of the metal ion coordination in the stability of the pseudoknot. In the non-coaxially stacking pseudoknot, stem 1 (S1), stem 2 (S2), and the intervening A14 involves unconventional stacking of base pairs coordinated by Na+ and/or bridging water molecules. A6 and G7 of loop L1 make a perfect base stacking in the major groove and are further stabilized by coordinated Na+ ions and water molecules. The first 4-nucleotide (nt) ACUC of loop L2 form a sharp turn and the following 4-nt AAAA cross the minor groove of S1 and are steadied by interactions with the nucleotides of S , bridging water molecules and coordinated Na+ ions. Our studies suggest that the metal ion plays a crucial role in the RNA pseudoknotting of VPK. In the stacking interior of S1 and S2, the Na+ ion is positioned in the major groove and interacts directly with the carbonyl group O6 of G28 and carbonyl group O4 of U13 in the wobble base pair U13:G28. The ion-RNA interactions in MMTV VPK not only stabilize the RNA pseudoknot but also modify the electrostatic properties of the nucleotides at the critical parts of the pseudoknot VPK.

UI MeSH Term Description Entries
D007477 Ions An atom or group of atoms that have a positive or negative electric charge due to a gain (negative charge) or loss (positive charge) of one or more electrons. Atoms with a positive charge are known as CATIONS; those with a negative charge are ANIONS.
D008324 Mammary Tumor Virus, Mouse The type species of BETARETROVIRUS commonly latent in mice. It causes mammary adenocarcinoma in a genetically susceptible strain of mice when the appropriate hormonal influences operate. Bittner Virus,Mammary Cancer Virus,Mouse mammary tumor virus,Mammary Tumor Viruses, Mouse
D008958 Models, Molecular Models used experimentally or theoretically to study molecular shape, electronic properties, or interactions; includes analogous molecules, computer-generated graphics, and mechanical structures. Molecular Models,Model, Molecular,Molecular Model
D009690 Nucleic Acid Conformation The spatial arrangement of the atoms of a nucleic acid or polynucleotide that results in its characteristic 3-dimensional shape. DNA Conformation,RNA Conformation,Conformation, DNA,Conformation, Nucleic Acid,Conformation, RNA,Conformations, DNA,Conformations, Nucleic Acid,Conformations, RNA,DNA Conformations,Nucleic Acid Conformations,RNA Conformations
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D012367 RNA, Viral Ribonucleic acid that makes up the genetic material of viruses. Viral RNA
D012964 Sodium A member of the alkali group of metals. It has the atomic symbol Na, atomic number 11, and atomic weight 23. Sodium Ion Level,Sodium-23,Ion Level, Sodium,Level, Sodium Ion,Sodium 23
D051379 Mice The common name for the genus Mus. Mice, House,Mus,Mus musculus,Mice, Laboratory,Mouse,Mouse, House,Mouse, Laboratory,Mouse, Swiss,Mus domesticus,Mus musculus domesticus,Swiss Mice,House Mice,House Mouse,Laboratory Mice,Laboratory Mouse,Mice, Swiss,Swiss Mouse,domesticus, Mus musculus
D018965 Frameshifting, Ribosomal A directed change in translational READING FRAMES that allows the production of a single protein from two or more OVERLAPPING GENES. The process is programmed by the nucleotide sequence of the MRNA and is sometimes also affected by the secondary or tertiary mRNA structure. It has been described mainly in VIRUSES (especially RETROVIRUSES); RETROTRANSPOSONS; and bacterial insertion elements but also in some cellular genes. Frameshifting, Translational,Ribosomal Frameshifting,Ribosomal Frame Shift,Ribosomal Frame Shifting,Ribosomal Frameshift,Frame Shift, Ribosomal,Frame Shifting, Ribosomal,Frame Shifts, Ribosomal,Frameshift, Ribosomal,Frameshifts, Ribosomal,Ribosomal Frame Shifts,Ribosomal Frameshifts,Translational Frameshifting

Related Publications

S Y Le, and J H Chen, and N Pattabiraman, and J V Maizel
May 2006, Nature,
S Y Le, and J H Chen, and N Pattabiraman, and J V Maizel
December 1999, Proceedings of the National Academy of Sciences of the United States of America,
S Y Le, and J H Chen, and N Pattabiraman, and J V Maizel
February 1992, Journal of virology,
S Y Le, and J H Chen, and N Pattabiraman, and J V Maizel
August 1991, Journal of molecular biology,
S Y Le, and J H Chen, and N Pattabiraman, and J V Maizel
June 2010, RNA (New York, N.Y.),
S Y Le, and J H Chen, and N Pattabiraman, and J V Maizel
March 1999, Nature structural biology,
S Y Le, and J H Chen, and N Pattabiraman, and J V Maizel
July 2001, Journal of molecular biology,
S Y Le, and J H Chen, and N Pattabiraman, and J V Maizel
May 1997, Nucleic acids research,
S Y Le, and J H Chen, and N Pattabiraman, and J V Maizel
April 2008, Bioorganic & medicinal chemistry,
S Y Le, and J H Chen, and N Pattabiraman, and J V Maizel
April 2020, RNA (New York, N.Y.),
Copied contents to your clipboard!