The effect of benomyl on neurite outgrowth in mouse NB2A and human SH-SY5Y neuroblastoma cells in vitro. 1998

W G McLean, and A D Holme, and O Janneh, and A Southgate, and C V Howard, and M G Reed
Department of Pharmacology, University of Liverpool, UK.

The commercial fungicide methyl 1-[(butylamino) carbonyl]-1H-benzimidazol-2-ylcarbamate (benomyl) is teratogenic in rats. Its mode of action is believed to be related to its ability to inhibit the polymerization of brain tubulin. In this study its effects were studied in cultured neuronal cells during differentiation and neurite outgrowth. Mouse NB2a and human SH-SY5Y neuroblastoma cells were induced to differentiate by addition of dibutyryl cyclic AMP and at the same time were exposed to various concentrations of benomyl. Benomyl significantly inhibited neurite outgrowth in both cell lines at concentrations of 10(-8) M and above with IC50 values of 5.9 x 10(-7) M and 1.0 x 10(-6) M in the NB2a and SH-SY5Y cells respectively. The results show that benomyl inhibits neuronal cell differentiation at concentrations likely to be achieved during the development of fetal abnormalities in rats in vivo.

UI MeSH Term Description Entries
D009447 Neuroblastoma A common neoplasm of early childhood arising from neural crest cells in the sympathetic nervous system, and characterized by diverse clinical behavior, ranging from spontaneous remission to rapid metastatic progression and death. This tumor is the most common intraabdominal malignancy of childhood, but it may also arise from thorax, neck, or rarely occur in the central nervous system. Histologic features include uniform round cells with hyperchromatic nuclei arranged in nests and separated by fibrovascular septa. Neuroblastomas may be associated with the opsoclonus-myoclonus syndrome. (From DeVita et al., Cancer: Principles and Practice of Oncology, 5th ed, pp2099-2101; Curr Opin Oncol 1998 Jan;10(1):43-51) Neuroblastomas
D001932 Brain Neoplasms Neoplasms of the intracranial components of the central nervous system, including the cerebral hemispheres, basal ganglia, hypothalamus, thalamus, brain stem, and cerebellum. Brain neoplasms are subdivided into primary (originating from brain tissue) and secondary (i.e., metastatic) forms. Primary neoplasms are subdivided into benign and malignant forms. In general, brain tumors may also be classified by age of onset, histologic type, or presenting location in the brain. Brain Cancer,Brain Metastases,Brain Tumors,Cancer of Brain,Malignant Primary Brain Tumors,Neoplasms, Intracranial,Benign Neoplasms, Brain,Brain Neoplasm, Primary,Brain Neoplasms, Benign,Brain Neoplasms, Malignant,Brain Neoplasms, Malignant, Primary,Brain Neoplasms, Primary Malignant,Brain Tumor, Primary,Brain Tumor, Recurrent,Cancer of the Brain,Intracranial Neoplasms,Malignant Neoplasms, Brain,Malignant Primary Brain Neoplasms,Neoplasms, Brain,Neoplasms, Brain, Benign,Neoplasms, Brain, Malignant,Neoplasms, Brain, Primary,Primary Brain Neoplasms,Primary Malignant Brain Neoplasms,Primary Malignant Brain Tumors,Benign Brain Neoplasm,Benign Brain Neoplasms,Benign Neoplasm, Brain,Brain Benign Neoplasm,Brain Benign Neoplasms,Brain Cancers,Brain Malignant Neoplasm,Brain Malignant Neoplasms,Brain Metastase,Brain Neoplasm,Brain Neoplasm, Benign,Brain Neoplasm, Malignant,Brain Neoplasms, Primary,Brain Tumor,Brain Tumors, Recurrent,Cancer, Brain,Intracranial Neoplasm,Malignant Brain Neoplasm,Malignant Brain Neoplasms,Malignant Neoplasm, Brain,Neoplasm, Brain,Neoplasm, Intracranial,Primary Brain Neoplasm,Primary Brain Tumor,Primary Brain Tumors,Recurrent Brain Tumor,Recurrent Brain Tumors,Tumor, Brain
D002454 Cell Differentiation Progressive restriction of the developmental potential and increasing specialization of function that leads to the formation of specialized cells, tissues, and organs. Differentiation, Cell,Cell Differentiations,Differentiations, Cell
D002470 Cell Survival The span of viability of a cell characterized by the capacity to perform certain functions such as metabolism, growth, reproduction, some form of responsiveness, and adaptability. Cell Viability,Cell Viabilities,Survival, Cell,Viabilities, Cell,Viability, Cell
D005659 Fungicides, Industrial Chemicals that kill or inhibit the growth of fungi in agricultural applications, on wood, plastics, or other materials, in swimming pools, etc. Industrial Fungicides
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001542 Benomyl A systemic agricultural fungicide used for control of certain fungal diseases of stone fruit. Benlate,Fundasol,Fundazol
D014407 Tumor Cells, Cultured Cells grown in vitro from neoplastic tissue. If they can be established as a TUMOR CELL LINE, they can be propagated in cell culture indefinitely. Cultured Tumor Cells,Neoplastic Cells, Cultured,Cultured Neoplastic Cells,Cell, Cultured Neoplastic,Cell, Cultured Tumor,Cells, Cultured Neoplastic,Cells, Cultured Tumor,Cultured Neoplastic Cell,Cultured Tumor Cell,Neoplastic Cell, Cultured,Tumor Cell, Cultured
D016501 Neurites In tissue culture, hairlike projections of neurons stimulated by growth factors and other molecules. These projections may go on to form a branched tree of dendrites or a single axon or they may be reabsorbed at a later stage of development. "Neurite" may refer to any filamentous or pointed outgrowth of an embryonal or tissue-culture neural cell. Neurite

Related Publications

W G McLean, and A D Holme, and O Janneh, and A Southgate, and C V Howard, and M G Reed
January 2014, International journal of toxicology,
W G McLean, and A D Holme, and O Janneh, and A Southgate, and C V Howard, and M G Reed
April 2009, Neuroscience letters,
W G McLean, and A D Holme, and O Janneh, and A Southgate, and C V Howard, and M G Reed
July 2016, Toxicological research,
W G McLean, and A D Holme, and O Janneh, and A Southgate, and C V Howard, and M G Reed
March 1997, Journal of neuroscience research,
W G McLean, and A D Holme, and O Janneh, and A Southgate, and C V Howard, and M G Reed
January 2001, Neuroscience,
W G McLean, and A D Holme, and O Janneh, and A Southgate, and C V Howard, and M G Reed
October 2015, Phytotherapy research : PTR,
W G McLean, and A D Holme, and O Janneh, and A Southgate, and C V Howard, and M G Reed
March 1991, Journal of neurochemistry,
W G McLean, and A D Holme, and O Janneh, and A Southgate, and C V Howard, and M G Reed
July 2009, Toxicology letters,
W G McLean, and A D Holme, and O Janneh, and A Southgate, and C V Howard, and M G Reed
May 1994, Neuroscience,
W G McLean, and A D Holme, and O Janneh, and A Southgate, and C V Howard, and M G Reed
September 2020, Nutrients,
Copied contents to your clipboard!