Outward rectifying potassium currents are the dominant voltage activated currents present in Deiters' cells. 1998

A P Nenov, and C Chen, and R P Bobbin
Department of Otorhinolaryngology and Biocommunication, Louisiana State University Medical Center, New Orleans 70112-2234, USA.

Supporting cells in the cochlea are thought to maintain the homeostasis of the organ of Corti and contribute to the electrical and micromechanical environment of the hair cells. Of the different types of supporting cells, Deiters' cells form a structure that holds the outer hair cells (OHCs) at their base and apex. This structure may play an important role in modifying cochlear mechanics by influencing the force produced by sound induced motion of the OHCs which in turn may be modulated by ATP acting on ligand gated cation channels on the Deiters' cells. Also, a glia-like role of buffering external K+ concentration for the Deiters' cells has been suggested. We studied Deiters' cells' electrical properties and ion conductances using the whole cell variant of the patch clamp technique since they must play an important role in the function of these cells. It was found that isolated Deiters' cells possess a large voltage activated, outwardly rectifying K+ selective conductance. Voltage activated Ca2+ currents and non-selective currents were not detected and voltage activated inward currents were very small. The outward K+ currents were found to be dependent on voltage but not on Ca2+ for their activation. Nimodipine and 4-aminopyridine (4-AP) were shown to interact directly with the K+ channels in a voltage dependent manner. It is suggested that the K+ selective channels in Deiters' cells may be similar to the Kv1.5 type channel. However, based on the voltage dependence of the channels that was described by double Boltzmann equation and on the alteration of that dependence by 4-AP, it is possible that more than one type of K+ selective channel exists.

UI MeSH Term Description Entries
D007552 Isotonic Solutions Solutions having the same osmotic pressure as blood serum, or another solution with which they are compared. (From Grant & Hackh's Chemical Dictionary, 5th ed & Dorland, 28th ed) Solutions, Isotonic
D009553 Nimodipine A calcium channel blockader with preferential cerebrovascular activity. It has marked cerebrovascular dilating effects and lowers blood pressure. Admon,Bay e 9736,Brainal,Calnit,Kenesil,Modus,Nimodipin Hexal,Nimodipin-ISIS,Nimodipino Bayvit,Nimotop,Nymalize,Remontal,Bayvit, Nimodipino,Hexal, Nimodipin,Nimodipin ISIS,e 9736, Bay
D002121 Calcium Channel Blockers A class of drugs that act by selective inhibition of calcium influx through cellular membranes. Calcium Antagonists, Exogenous,Calcium Blockaders, Exogenous,Calcium Channel Antagonist,Calcium Channel Blocker,Calcium Channel Blocking Drug,Calcium Inhibitors, Exogenous,Channel Blockers, Calcium,Exogenous Calcium Blockader,Exogenous Calcium Inhibitor,Calcium Channel Antagonists,Calcium Channel Blocking Drugs,Exogenous Calcium Antagonists,Exogenous Calcium Blockaders,Exogenous Calcium Inhibitors,Antagonist, Calcium Channel,Antagonists, Calcium Channel,Antagonists, Exogenous Calcium,Blockader, Exogenous Calcium,Blocker, Calcium Channel,Blockers, Calcium Channel,Calcium Blockader, Exogenous,Calcium Inhibitor, Exogenous,Channel Antagonist, Calcium,Channel Blocker, Calcium,Inhibitor, Exogenous Calcium
D002469 Cell Separation Techniques for separating distinct populations of cells. Cell Isolation,Cell Segregation,Isolation, Cell,Cell Isolations,Cell Segregations,Cell Separations,Isolations, Cell,Segregation, Cell,Segregations, Cell,Separation, Cell,Separations, Cell
D003689 Vestibular Nucleus, Lateral Vestibular nucleus lying immediately superior to the inferior vestibular nucleus and composed of large multipolar nerve cells. Its upper end becomes continuous with the superior vestibular nucleus. Deiter Nucleus,Lateral Vestibular Nucleus,Deiter's Nucleus,Nucleus Vestibularis Lateralis,Nucleus Vestibularis Magnocellularis,Nucleus of Deiters,Deiters Nucleus,Nucleus Vestibularis Laterali,Nucleus Vestibularis Magnocellulari,Nucleus, Deiter,Nucleus, Deiter's,Nucleus, Lateral Vestibular,Vestibularis Laterali, Nucleus,Vestibularis Lateralis, Nucleus,Vestibularis Magnocellulari, Nucleus,Vestibularis Magnocellularis, Nucleus
D006168 Guinea Pigs A common name used for the genus Cavia. The most common species is Cavia porcellus which is the domesticated guinea pig used for pets and biomedical research. Cavia,Cavia porcellus,Guinea Pig,Pig, Guinea,Pigs, Guinea
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D015221 Potassium Channels Cell membrane glycoproteins that are selectively permeable to potassium ions. At least eight major groups of K channels exist and they are made up of dozens of different subunits. Ion Channels, Potassium,Ion Channel, Potassium,Potassium Channel,Potassium Ion Channels,Channel, Potassium,Channel, Potassium Ion,Channels, Potassium,Channels, Potassium Ion,Potassium Ion Channel
D015761 4-Aminopyridine One of the POTASSIUM CHANNEL BLOCKERS with secondary effect on calcium currents which is used mainly as a research tool and to characterize channel subtypes. 4-Aminopyridine Sustained Release,Dalfampridine,Fampridine-SR,Pymadine,VMI-103,4 Aminopyridine,4 Aminopyridine Sustained Release,Fampridine SR,Sustained Release, 4-Aminopyridine,VMI 103,VMI103
D018072 Hair Cells, Auditory, Outer Sensory cells of organ of Corti. In mammals, they are usually arranged in three or four rows, and away from the core of spongy bone (the modiolus), lateral to the INNER AUDITORY HAIR CELLS and other supporting structures. Their cell bodies and STEREOCILIA increase in length from the cochlear base toward the apex and laterally across the rows, allowing differential responses to various frequencies of sound. Auditory Hair Cell, Outer,Auditory Hair Cells, Outer,Cochlear Outer Hair Cell,Cochlear Outer Hair Cells,Hair Cell, Auditory, Outer,Hair Cells, Auditory, Outer Inner,Outer Auditory Hair Cell,Outer Auditory Hair Cells,Outer Hair Cells,Hair Cells, Outer

Related Publications

A P Nenov, and C Chen, and R P Bobbin
June 2000, Zhonghua er bi yan hou ke za zhi,
A P Nenov, and C Chen, and R P Bobbin
March 1999, Neuroscience letters,
A P Nenov, and C Chen, and R P Bobbin
June 1999, Journal of neurophysiology,
A P Nenov, and C Chen, and R P Bobbin
February 2002, Chinese medical journal,
A P Nenov, and C Chen, and R P Bobbin
January 1988, The Japanese journal of physiology,
A P Nenov, and C Chen, and R P Bobbin
July 2020, Cellular and molecular neurobiology,
A P Nenov, and C Chen, and R P Bobbin
December 2013, The Korean journal of physiology & pharmacology : official journal of the Korean Physiological Society and the Korean Society of Pharmacology,
A P Nenov, and C Chen, and R P Bobbin
June 1995, Synapse (New York, N.Y.),
A P Nenov, and C Chen, and R P Bobbin
November 1991, The Journal of physiology,
Copied contents to your clipboard!