Protein carboxyl methylation controls intracellular pH in human platelets. 1998

K Otsuka, and C M Roullet, and P McDougal, and D A McCarron, and J B Roullet
Division of Nephrology, Hypertension and Clinical Pharmacology, Oregon Health Sciences University, Portland 97201-3098, USA.

OBJECTIVE Carboxyl methylation is a reversible post-translational event which regulates the function of several cellular proteins. Because the human Na+-H+ antiporter (NHE-1) possesses a C-terminal consensus sequence for carboxyl methylation, we examined the role of protein carboxyl methylation in the regulation of intracellular pH homeostasis. METHODS Experiments were conducted using human platelets and N-acetyl-S-trans,trans-farnesyl-L cysteine (AFC), a specific prenylcysteine methyltransferase inhibitor. The effect of AFC on both basal intracellular pH (pHi) and on the kinetic properties of the Na+-H+ antiporter was characterized. METHODS pHi was determined in cell suspensions using 2,7-biscarboxyethyl-5(6)-carboxyfluorescein tetraacetoxymethyl ester, a fluorescent pH indicator. The kinetics properties of the Na+-H+ antiporter activity were determined using platelets acidified with nigericin and challenged with varying extracellular concentrations of Na+. RESULTS AFC (20 micromol/l) decreased basal pHi significantly (7.047 +/- 0.011 versus 7.133 +/- 0.012 for control, P< 0.001). The acidification was dose-dependent and reached steady state 3 min after AFC addition. In the absence of extracellular Na+, the platelets were acidified to the same extent with AFC or with ethanol (control): 6.530 +/- 0.031 versus 6.532 +/- 0.031 (P= 0.97). However, upon addition of Na+, the platelets treated with AFC showed a significant decrease in the maximal value for initial pHi recovery compared with controls: 0.788 +/- 0.041 versus 0.983 +/- 0.047 pH/min (P< 0.02). AFC also increased the Hill coefficient (2.89 +/- 0.22 versus 2.14 +/- 0.16, P < 0.03), and tended to decrease K0.5, the [Na+] corresponding to half-maximal activation (51.3 +/- 1.8 versus 60.5 +/- 3.9 mmol/l, P = 0.06) of the antiporter. CONCLUSIONS Our data indicate that inhibition of carboxyl methylation reduces basal pHi and alters the kinetic properties of the Na+-H+ antiporter in human platelets, suggesting that carboxyl methylation is implicated in the regulation of intracellular pH homeostasis.

UI MeSH Term Description Entries
D007425 Intracellular Membranes Thin structures that encapsulate subcellular structures or ORGANELLES in EUKARYOTIC CELLS. They include a variety of membranes associated with the CELL NUCLEUS; the MITOCHONDRIA; the GOLGI APPARATUS; the ENDOPLASMIC RETICULUM; LYSOSOMES; PLASTIDS; and VACUOLES. Membranes, Intracellular,Intracellular Membrane,Membrane, Intracellular
D008745 Methylation Addition of methyl groups. In histo-chemistry methylation is used to esterify carboxyl groups and remove sulfate groups by treating tissue sections with hot methanol in the presence of hydrochloric acid. (From Stedman, 25th ed) Methylations
D001792 Blood Platelets Non-nucleated disk-shaped cells formed in the megakaryocyte and found in the blood of all mammals. They are mainly involved in blood coagulation. Platelets,Thrombocytes,Blood Platelet,Platelet,Platelet, Blood,Platelets, Blood,Thrombocyte
D004791 Enzyme Inhibitors Compounds or agents that combine with an enzyme in such a manner as to prevent the normal substrate-enzyme combination and the catalytic reaction. Enzyme Inhibitor,Inhibitor, Enzyme,Inhibitors, Enzyme
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D006859 Hydrogen The first chemical element in the periodic table with atomic symbol H, and atomic number 1. Protium (atomic weight 1) is by far the most common hydrogen isotope. Hydrogen also exists as the stable isotope DEUTERIUM (atomic weight 2) and the radioactive isotope TRITIUM (atomic weight 3). Hydrogen forms into a diatomic molecule at room temperature and appears as a highly flammable colorless and odorless gas. Protium,Hydrogen-1
D006863 Hydrogen-Ion Concentration The normality of a solution with respect to HYDROGEN ions; H+. It is related to acidity measurements in most cases by pH pH,Concentration, Hydrogen-Ion,Concentrations, Hydrogen-Ion,Hydrogen Ion Concentration,Hydrogen-Ion Concentrations
D000111 Acetylcysteine The N-acetyl derivative of CYSTEINE. It is used as a mucolytic agent to reduce the viscosity of mucous secretions. It has also been shown to have antiviral effects in patients with HIV due to inhibition of viral stimulation by reactive oxygen intermediates. Mercapturic Acid,Acemuc,Acetabs,Acetylcystein AL,Acetylcystein Atid,Acetylcystein Heumann,Acetylcystein Trom,Acetylcysteine Hydrochloride,Acetylcysteine Sodium,Acetylcysteine Zinc,Acetylcysteine, (D)-Isomer,Acetylcysteine, (DL)-Isomer,Acetylcysteine, Monoammonium Salt,Acetylcysteine, Monosodium Salt,Acetylin,Acetyst,Acétylcystéine GNR,Airbron,Alveolex,Azubronchin,Bisolvon NAC,Bromuc,Broncho-Fips,Broncholysin,Broncoclar,Codotussyl,Cystamucil,Dampo Mucopect,Eurespiran,Exomuc,Fabrol,Fluimucil,Fluprowit,Frekatuss,Genac,Hoestil,Ilube,Jenacystein,Jenapharm,Lantamed,Larylin NAC,Lindocetyl,M-Pectil,Muciteran,Muco Sanigen,Mucomyst,Mucosil,Mucosol,Mucosolvin,N-Acetyl-L-cysteine,N-Acetylcysteine,NAC AL,NAC Zambon,Optipect Hustengetränk,Siccoral,Siran,Solmucol,acebraus,durabronchal,mentopin Acetylcystein,Acetylcystein, mentopin,Acid, Mercapturic,Broncho Fips,BronchoFips,Hustengetränk, Optipect,Hydrochloride, Acetylcysteine,M Pectil,MPectil,Monoammonium Salt Acetylcysteine,Monosodium Salt Acetylcysteine,Mucopect, Dampo,N Acetyl L cysteine,N Acetylcysteine,NAC, Bisolvon,Sanigen, Muco,Sodium, Acetylcysteine,Zambon, NAC,Zinc, Acetylcysteine

Related Publications

K Otsuka, and C M Roullet, and P McDougal, and D A McCarron, and J B Roullet
January 1984, The Journal of biological chemistry,
K Otsuka, and C M Roullet, and P McDougal, and D A McCarron, and J B Roullet
June 2006, Transfusion,
K Otsuka, and C M Roullet, and P McDougal, and D A McCarron, and J B Roullet
December 1989, Current opinion in cell biology,
K Otsuka, and C M Roullet, and P McDougal, and D A McCarron, and J B Roullet
October 1996, Biochimica et biophysica acta,
K Otsuka, and C M Roullet, and P McDougal, and D A McCarron, and J B Roullet
February 2003, Platelets,
K Otsuka, and C M Roullet, and P McDougal, and D A McCarron, and J B Roullet
February 1989, Thrombosis research,
K Otsuka, and C M Roullet, and P McDougal, and D A McCarron, and J B Roullet
March 1999, Experimental & molecular medicine,
K Otsuka, and C M Roullet, and P McDougal, and D A McCarron, and J B Roullet
May 1985, Biochemistry,
K Otsuka, and C M Roullet, and P McDougal, and D A McCarron, and J B Roullet
March 1988, Cellular and molecular neurobiology,
K Otsuka, and C M Roullet, and P McDougal, and D A McCarron, and J B Roullet
October 1985, Canadian journal of biochemistry and cell biology = Revue canadienne de biochimie et biologie cellulaire,
Copied contents to your clipboard!