Biological and biochemical characteristics of cytoadhesion of Plasmodium falciparum-infected erythrocytes to chondroitin-4-sulfate. 1998

B Pouvelle, and T Fusaï, and C Lépolard, and J Gysin
Laboratoire de Parasitologie Expérimentale, Faculté de Médecine, Université de la Méditerranée (Aix-Marseille II), 13385 Marseille Cedex 5, France. ygipaly@imaginet.fr

The cytoadhesion of Plasmodium falciparum laboratory strains and clones to Saimiri brain microvascular endothelial cells (SBEC 17), with chondroitin-4-sulfate (CSA) as the only adhesion receptor, was tested. Only one strain had significant cytoadhesion. However, CSA-specific infected erythrocytes (IRBCs) were detected in all strains after selection of a CSA-specific subpopulation by culturing the few adherent IRBCs. This demonstrates the lack of sensitivity of cytoadhesion microassays for detecting small quantities of CSA-specific IRBCs in cultures or field isolates. Cytoadhesion to CSA is maximal at 24 h of the cycle and decreases with the onset of schizogony, reaching a minimum just before reinvasion. This fluctuation must be taken into account in comparisons of the cytoadhesion of different strains or isolates. The minimum size of CSA for active inhibition was 4 kDa, and a mass of 9 kDa was required for inhibition similar to that obtained with the 50-kDa CSA. In contrast to cytoadhesion to CSA, which is pH independent or maximal at physiological pH (depending on the target endothelial cells), adhesion to CD36 and intercellular adhesion molecule 1 was pH dependent, requiring acidic conditions to be maximal in all cases. Cytoadhesion to CSA may trigger the occlusion of microvessels and cause the acidosis necessary for the other receptors to be fully efficient. If this key role in the mechanisms of sequestration were to be confirmed in vivo, prevalence studies of the CSA cytoadhesion phenotype would have to be reevaluated, because simple cytoadhesion assays do not detect CSA-specific parasites present in very low numbers, and these parasites might then be undetected in the peripheral blood but present in organs in which sequestration occurs, such as the placenta (M. Fried and P. E. Duffy, Science 272:1502-1504, 1996).

UI MeSH Term Description Entries
D008833 Microcirculation The circulation of the BLOOD through the MICROVASCULAR NETWORK. Microvascular Blood Flow,Microvascular Circulation,Blood Flow, Microvascular,Circulation, Microvascular,Flow, Microvascular Blood,Microvascular Blood Flows,Microvascular Circulations
D008970 Molecular Weight The sum of the weight of all the atoms in a molecule. Molecular Weights,Weight, Molecular,Weights, Molecular
D010963 Plasmodium falciparum A species of protozoa that is the causal agent of falciparum malaria (MALARIA, FALCIPARUM). It is most prevalent in the tropics and subtropics. Plasmodium falciparums,falciparums, Plasmodium
D001921 Brain The part of CENTRAL NERVOUS SYSTEM that is contained within the skull (CRANIUM). Arising from the NEURAL TUBE, the embryonic brain is comprised of three major parts including PROSENCEPHALON (the forebrain); MESENCEPHALON (the midbrain); and RHOMBENCEPHALON (the hindbrain). The developed brain consists of CEREBRUM; CEREBELLUM; and other structures in the BRAIN STEM. Encephalon
D002448 Cell Adhesion Adherence of cells to surfaces or to other cells. Adhesion, Cell,Adhesions, Cell,Cell Adhesions
D002809 Chondroitin Sulfates Derivatives of chondroitin which have a sulfate moiety esterified to the galactosamine moiety of chondroitin. Chondroitin sulfate A, or chondroitin 4-sulfate, and chondroitin sulfate C, or chondroitin 6-sulfate, have the sulfate esterified in the 4- and 6-positions, respectively. Chondroitin sulfate B (beta heparin; DERMATAN SULFATE) is a misnomer and this compound is not a true chondroitin sulfate. Chondroitin 4-Sulfate,Chondroitin 6-Sulfate,Chondroitin Sulfate A,Chondroitin Sulfate C,Blutal,Chondroitin 4-Sulfate, Aluminum Salt,Chondroitin 4-Sulfate, Potassium Salt,Chondroitin 6-Sulfate, Potassium Salt,Chondroitin 6-Sulfate, Sodium Salt,Chondroitin Sulfate,Chondroitin Sulfate 4-Sulfate, Sodium Salt,Chondroitin Sulfate, Calcium Salt,Chondroitin Sulfate, Iron (+3) Salt,Chondroitin Sulfate, Iron Salt,Chondroitin Sulfate, Potassium Salt,Chondroitin Sulfate, Sodium Salt,Chondroitin Sulfate, Zinc Salt,Chonsurid,Sodium Chondroitin Sulfate,Translagen,Chondroitin 4 Sulfate,Chondroitin 4 Sulfate, Aluminum Salt,Chondroitin 4 Sulfate, Potassium Salt,Chondroitin 6 Sulfate,Chondroitin 6 Sulfate, Potassium Salt,Chondroitin 6 Sulfate, Sodium Salt,Chondroitin Sulfate 4 Sulfate, Sodium Salt,Chondroitin Sulfate, Sodium,Sulfate, Chondroitin,Sulfate, Sodium Chondroitin,Sulfates, Chondroitin
D004730 Endothelium, Vascular Single pavement layer of cells which line the luminal surface of the entire vascular system and regulate the transport of macromolecules and blood components. Capillary Endothelium,Vascular Endothelium,Capillary Endotheliums,Endothelium, Capillary,Endotheliums, Capillary,Endotheliums, Vascular,Vascular Endotheliums
D004912 Erythrocytes Red blood cells. Mature erythrocytes are non-nucleated, biconcave disks containing HEMOGLOBIN whose function is to transport OXYGEN. Blood Cells, Red,Blood Corpuscles, Red,Red Blood Cells,Red Blood Corpuscles,Blood Cell, Red,Blood Corpuscle, Red,Erythrocyte,Red Blood Cell,Red Blood Corpuscle
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D012453 Saimiri A genus of the family CEBIDAE consisting of four species: S. boliviensis, S. orstedii (red-backed squirrel monkey), S. sciureus (common squirrel monkey), and S. ustus. They inhabit tropical rain forests in Central and South America. S. sciureus is used extensively in research studies. Monkey, Squirrel,Squirrel Monkey,Monkeys, Squirrel,Saimirus,Squirrel Monkeys

Related Publications

B Pouvelle, and T Fusaï, and C Lépolard, and J Gysin
August 1999, Bioscience reports,
B Pouvelle, and T Fusaï, and C Lépolard, and J Gysin
January 2014, Antimicrobial agents and chemotherapy,
B Pouvelle, and T Fusaï, and C Lépolard, and J Gysin
November 2000, Nature medicine,
B Pouvelle, and T Fusaï, and C Lépolard, and J Gysin
January 2003, The Journal of infectious diseases,
B Pouvelle, and T Fusaï, and C Lépolard, and J Gysin
June 2008, Infection and immunity,
B Pouvelle, and T Fusaï, and C Lépolard, and J Gysin
May 2008, Molecular and biochemical parasitology,
B Pouvelle, and T Fusaï, and C Lépolard, and J Gysin
December 2013, Cellular microbiology,
B Pouvelle, and T Fusaï, and C Lépolard, and J Gysin
August 1997, Molecular medicine (Cambridge, Mass.),
B Pouvelle, and T Fusaï, and C Lépolard, and J Gysin
July 2005, Infection and immunity,
Copied contents to your clipboard!