An electron microscopic study of lesion-induced synaptogenesis in the dentate gyrus of the adult rat. I. Magnitude and time course of degeneration. 1976

D A Matthews, and C Cotman, and G Lynch

Synapses in the rat dentate gyrus are rapidly lost after removal of the primary input from the entorhinal cortex. In this paper we describe the extent and time course of degeneration and in the subsequent paper the nature of the reinnervation processes. They synapses of entorhinal afferents are remarkably concentrated in their zone of termination. Unilateral removal of the rat entorhinal cortex results in the loss of about 86% of all synapses in the outer three-fourths of the molecular layer of the epsilateral dentate gyrus. Entorhinal synapses are all asymmetric (Gray type I) and terminate on dendritic spines. Analysis of the degeneration reaction provides a means to examine the characteristics of the loss of a relatively homogeneous afferent on a single cell type. The morphological characteristics of the the degenerating terminals showed some heterogeneity; both the electron lucent and electron dense types of degenerating terminals were identified. The electron lucent type was observed only at short survival times. The time course of the loss of degenerating terminals was resolvable into two components, each of which followed first order decay kinetics. Thus degenerating entorhinal terminals behaved as a population which disappeared randomly at a rate dependent on the fraction of terminals present at any time. The loss of degenerating terminals was accompanied by the loss of postsynaptic sites. At short survival times the majority of postsynaptic sites (defined by the presence of a postsynaptic density) had disappeared. There was also a loss of complex spines and some shrinkage of the molecular layer.

UI MeSH Term Description Entries
D008297 Male Males
D009410 Nerve Degeneration Loss of functional activity and trophic degeneration of nerve axons and their terminal arborizations following the destruction of their cells of origin or interruption of their continuity with these cells. The pathology is characteristic of neurodegenerative diseases. Often the process of nerve degeneration is studied in research on neuroanatomical localization and correlation of the neurophysiology of neural pathways. Neuron Degeneration,Degeneration, Nerve,Degeneration, Neuron,Degenerations, Nerve,Degenerations, Neuron,Nerve Degenerations,Neuron Degenerations
D003712 Dendrites Extensions of the nerve cell body. They are short and branched and receive stimuli from other NEURONS. Dendrite
D006624 Hippocampus A curved elevation of GRAY MATTER extending the entire length of the floor of the TEMPORAL HORN of the LATERAL VENTRICLE (see also TEMPORAL LOBE). The hippocampus proper, subiculum, and DENTATE GYRUS constitute the hippocampal formation. Sometimes authors include the ENTORHINAL CORTEX in the hippocampal formation. Ammon Horn,Cornu Ammonis,Hippocampal Formation,Subiculum,Ammon's Horn,Hippocampus Proper,Ammons Horn,Formation, Hippocampal,Formations, Hippocampal,Hippocampal Formations,Hippocampus Propers,Horn, Ammon,Horn, Ammon's,Proper, Hippocampus,Propers, Hippocampus,Subiculums
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D013569 Synapses Specialized junctions at which a neuron communicates with a target cell. At classical synapses, a neuron's presynaptic terminal releases a chemical transmitter stored in synaptic vesicles which diffuses across a narrow synaptic cleft and activates receptors on the postsynaptic membrane of the target cell. The target may be a dendrite, cell body, or axon of another neuron, or a specialized region of a muscle or secretory cell. Neurons may also communicate via direct electrical coupling with ELECTRICAL SYNAPSES. Several other non-synaptic chemical or electric signal transmitting processes occur via extracellular mediated interactions. Synapse
D013997 Time Factors Elements of limited time intervals, contributing to particular results or situations. Time Series,Factor, Time,Time Factor
D051381 Rats The common name for the genus Rattus. Rattus,Rats, Laboratory,Rats, Norway,Rattus norvegicus,Laboratory Rat,Laboratory Rats,Norway Rat,Norway Rats,Rat,Rat, Laboratory,Rat, Norway,norvegicus, Rattus

Related Publications

D A Matthews, and C Cotman, and G Lynch
December 1973, Brain research,
D A Matthews, and C Cotman, and G Lynch
March 1982, The Journal of comparative neurology,
D A Matthews, and C Cotman, and G Lynch
March 1982, The Journal of comparative neurology,
D A Matthews, and C Cotman, and G Lynch
September 1997, Neuroscience,
D A Matthews, and C Cotman, and G Lynch
January 1977, Brain research,
D A Matthews, and C Cotman, and G Lynch
May 1994, Experimental neurology,
D A Matthews, and C Cotman, and G Lynch
November 1987, Brain research,
Copied contents to your clipboard!